• ISSN: 2148-2225 (online)

alphanumeric journal

alphanumeric journal

The Journal of Operations Research, Statistics, Econometrics and Management Information Systems

Rank reversal on entropy-based weighting methods


Osman Pala, Ph.D.


Abstract

Entropy is an important criteria weighting measure used in decision making. There are different forms of entropy that are used to measure the inter criterion contrast intensity. In this study, we defined various entropy and diversity measures as criteria weighting approach in MCDM. We compared the approaches in terms of the rank reversal phenomenon by conducting a simulation study according to the framework we established. In addition, we compared these weighting approaches in terms of their dispersion characterization in an illustrative case. The Gini-Simpson index is the foremost index among these approaches, which is more persistent to rank reversal, less sensitive to distribution of domain and outputs more acceptable weightings.

Keywords: Criteria Weighting, Gini-Simpson diversity, Multiple criteria analysis, Rank reversal, Rao entropy, Shannon entropy, Yager entropy

Jel Classification: C15, C44, C61


Suggested citation

Pala, O. (). Rank reversal on entropy-based weighting methods. Alphanumeric Journal, 13(2), 55-76. https://doi.org/10.17093/alphanumeric.1653266

bibtex

References

  • Adeel, A., Khan, M. A., Akram, T., Sharif, A., Yasmin, M., Saba, T., & Javed, K. (2020). Entropy-controlled deep features selection framework for grape leaf diseases recognition. Expert Systems, 39(7). https://doi.org/10.1111/exsy.12569
  • Aksaraylı, M., & Pala, O. (2018). A polynomial goal programming model for portfolio optimization based on entropy and higher moments. Expert Systems with Applications, 94, 185–192. https://doi.org/10.1016/j.eswa.2017.10.056
  • Alamleh, A., Albahri, O. S., Zaidan, A. A., Alamoodi, A. H., Albahri, A. S., Zaidan, B. B., Qahtan, S., Ismail, A. R. binti, Malik, R. Q., Baqer, M. J., Jasim, A. N., & Al-Samarraay, M. S. (2022). Multi-Attribute Decision-Making for Intrusion Detection Systems: A Systematic Review. International Journal of Information Technology & Decision Making, 22(1), 589–636. https://doi.org/10.1142/s021962202230004x
  • Almeida-Filho, A. T. d., Lima Silva, D. F. de, & Ferreira, L. (2020). Financial modelling with multiple criteria decision making: A systematic literature review. Journal of the Operational Research Society, 72(10), 2161–2179. https://doi.org/10.1080/01605682.2020.1772021
  • Ayrim, Y., Atalay, K. D., & Can, G. F. (2018). A New Stochastic MCDM Approach Based on COPRAS. International Journal of Information Technology & Decision Making, 17(3), 857–882. https://doi.org/10.1142/s0219622018500116
  • Aytekin, A. (2021). Comparative Analysis of the Normalization Techniques in the Context of MCDM Problems. Decision Making: Applications in Management and Engineering, 4(2), 1–25. https://doi.org/10.31181/dmame210402001a
  • Bączkiewicz, A., Kizielewicz, B., Shekhovtsov, A., Yelmikheiev, M., Kozlov, V., & Sałabun, W. (2021). Comparative Analysis of Solar Panels with Determination of Local Significance Levels of Criteria Using the MCDM Methods Resistant to the Rank Reversal Phenomenon. Energies, 14(18), 5727. https://doi.org/10.3390/en14185727
  • Baykasoğlu, A., & Ercan, E. (2021). Analysis of rank reversal problems in ``Weighted Aggregated Sum Product Assessment'' method. Soft Computing, 25(24), 15243–15254. https://doi.org/10.1007/s00500-021-06405-w
  • Belton, V., & Gear, T. (1983). On a short-coming of Saaty's method of analytic hierarchies. Omega, 11(3), 228–230. https://doi.org/10.1016/0305-0483(83)90047-6
  • Bragge, J., Korhonen, P., Wallenius, H., & Wallenius, J. (2012). Scholarly Communities of Research in Multiple Criteria Decision Making: A Bibliometric Research Profiling Study. International Journal of Information Technology & Decision Making, 11(2), 401–426. https://doi.org/10.1142/s0219622012400081
  • Carmichael, B., Koumou, G. B., & Moran, K. (2017). Rao's quadratic entropy and maximum diversification indexation. Quantitative Finance, 18(6), 1017–1031. https://doi.org/10.1080/14697688.2017.1383625
  • Ceballos, B., Pelta, D. A., & Lamata, M. T. (2018). Rank Reversal and the VIKOR Method: An Empirical Evaluation. International Journal of Information Technology & Decision Making, 17(2), 513–525. https://doi.org/10.1142/s0219622017500237
  • Chen, Y., Yu, J., & Khan, S. (2010). Spatial sensitivity analysis of multi-criteria weights in GIS-based land suitability evaluation. Environmental Modelling & Software, 25(12), 1582–1591. https://doi.org/10.1016/j.envsoft.2010.06.001
  • Chowdhury, P., & Paul, S. K. (2020). Applications of MCDM methods in research on corporate sustainability: A systematic literature review. Management of Environmental Quality: An International Journal, 31(2), 385–405. https://doi.org/10.1108/meq-12-2019-0284
  • Cinelli, M., Coles, S. R., & Kirwan, K. (2014). Analysis of the potentials of multi criteria decision analysis methods to conduct sustainability assessment. Ecological Indicators, 46, 138–148. https://doi.org/10.1016/j.ecolind.2014.06.011
  • Doxa, A., & Prastacos, P. (2020). Using Rao's quadratic entropy to define environmental heterogeneity priority areas in the European Mediterranean biome. Biological Conservation, 241, 108366. https://doi.org/10.1016/j.biocon.2019.108366
  • Ecer, F., & Pamucar, D. (2022). A novel LOPCOW-DOBI multi-criteria sustainability performance assessment methodology: An application in developing country banking sector. Omega, 112, 102690. https://doi.org/10.1016/j.omega.2022.102690
  • Emrouznejad, A., & Marra, M. (2014). Ordered Weighted Averaging Operators 1988-2014: A Citation-Based Literature Survey: ORDERED WEIGHTED AVERAGING OPERATORS. International Journal of Intelligent Systems, 29(11), 994–1014. https://doi.org/10.1002/int.21673
  • Eskandari, H., & Rabelo, L. (2007). Handling Uncertainty in the Analytic Hierarchy Process: A Stochastic Approach. International Journal of Information Technology & Decision Making, 6(1), 177–189. https://doi.org/10.1142/s0219622007002356
  • Farias Aires, R. F. de, & Ferreira, L. (2018). The Rank Reversal Problem in Multi-criteria Decision Making: A Literature Review. Pesquisa Operacional, 38(2), 331–362. https://doi.org/10.1590/0101-7438.2018.038.02.0331
  • Farias Aires, R. F. de, & Ferreira, L. (2019). A new approach to avoid rank reversal cases in the TOPSIS method. Computers & Industrial Engineering, 132, 84–97. https://doi.org/10.1016/j.cie.2019.04.023
  • Fishburn, P. C. (1967). Letter to the Editor–Additive Utilities with Incomplete Product Sets: Application to Priorities and Assignments. Operations Research, 15(3), 537–542. https://doi.org/10.1287/opre.15.3.537
  • Ghosh, M., Das, D., & Chakraborty, C. (2010). Entropy based divergence for leukocyte image segmentation. 2010 International Conference on Systems in Medicine and Biology, 409–413. https://doi.org/10.1109/icsmb.2010.5735414
  • Gini, C. (1912). Variabilità e mutabilità: contributo allo studio delle distribuzioni e delle relazioni statistiche. [Fasc. I.]. Tipogr. di P. Cuppini. https://books.google.com.tr/books?id=fqjaBPMxB9kC
  • Gonzales, P., & Ajami, N. K. (2017). An integrative regional resilience framework for the changing urban water paradigm. Sustainable Cities and Society, 30, 128–138. https://doi.org/10.1016/j.scs.2017.01.012
  • Hinduja, A., & Pandey, M. (2021). Comparative study of MCDM methods under different levels of uncertainty. International Journal of Information and Decision Sciences, 13(1), 16. https://doi.org/10.1504/ijids.2021.113598
  • Hwang, C.-L., & Yoon, K. (1981). Multiple Attribute Decision Making. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-48318-9
  • Jamwal, A., Agrawal, R., Sharma, M., & Kumar, V. (2020). Review on multi-criteria decision analysis in sustainable manufacturing decision making. International Journal of Sustainable Engineering, 14(3), 202–225. https://doi.org/10.1080/19397038.2020.1866708
  • Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2018). A Comparative Analysis of the Rank Reversal Phenomenon in the EDAS and TOPSIS Methods. Economic Computation and Economic Cybernetics Studies and Research, 52(3/2018), 121–134. https://doi.org/10.24818/18423264/52.3.18.08
  • Khachatryan, D., & Muehlmann, B. (2019). Measuring technological breadth and depth of patent documents using Rao's Quadratic Entropy. Journal of Applied Statistics, 46(15), 2819–2844. https://doi.org/10.1080/02664763.2019.1619072
  • Khalaj, M., Tavakkoli-Moghaddam, R., Khalaj, F., & Siadat, A. (2019). New definition of the cross entropy based on the Dempster-Shafer theory and its application in a decision-making process. Communications in Statistics - Theory and Methods, 49(4), 909–923. https://doi.org/10.1080/03610926.2018.1554123
  • Kumar, R., Singh, S., Bilga, P. S., Jatin, Singh, J., Singh, S., Scutaru, M.-L., & Pruncu, C. I. (2021). Revealing the benefits of entropy weights method for multi-objective optimization in machining operations: A critical review. Journal of Materials Research and Technology, 10, 1471–1492. https://doi.org/10.1016/j.jmrt.2020.12.114
  • Kumar, S., & Kumar, S. (2021). An Extension of TODIM with VIKOR approach based on Gini Simpson Index of Diversity under Picture fuzzy framework to Evaluate Opinion Polls. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(3), 3715–3730. https://doi.org/10.17762/turcomat.v12i3.1654
  • Kumar, S., & Kumar, S. (2022). Multi-attribute Decision-Making Problem Based on TODIM with Gini Simpson Index of Diversity for Intuitionistic Fuzzy Sets. In Proceedings of International Conference on Advanced Computing Applications (pp. 773–785). Springer Singapore. https://doi.org/10.1007/978-981-16-5207-3_63
  • Lak Kamari, M., Isvand, H., & Alhuyi Nazari, M. (2020). Applications of multi-Criteria Decision-Making (MCDM) Methods in Renewable Energy Development: A Review. Renewable Energy Research and Application, 1(1). https://doi.org/10.22044/rera.2020.8541.1006
  • Li, Y., Cheng, Y., Mou, Q., & Xian, S. (2020). Novel Cross-Entropy Based on Multi-attribute Group Decision-Making with Unknown Experts' Weights Under Interval-Valued Intuitionistic Fuzzy Environment. International Journal of Computational Intelligence Systems, 13(1), 1295. https://doi.org/10.2991/ijcis.d.200817.001
  • Liu, H.-C., Chen, X.-Q., Duan, C.-Y., & Wang, Y.-M. (2019). Failure mode and effect analysis using multi-criteria decision making methods: A systematic literature review. Computers & Industrial Engineering, 135, 881–897. https://doi.org/10.1016/j.cie.2019.06.055
  • Liu, P., Zhang, X., & Wang, Z. (2020). An Extended VIKOR Method for Multiple Attribute Decision Making with Linguistic D Numbers Based on Fuzzy Entropy. International Journal of Information Technology & Decision Making, 19(1), 143–167. https://doi.org/10.1142/s0219622019500433
  • Lotfi, F. H., & Fallahnejad, R. (2010). Imprecise Shannon's Entropy and Multi Attribute Decision Making. Entropy, 12(1), 53–62. https://doi.org/10.3390/e12010053
  • Ma, J. (2019). Generalised grey target decision method for mixed attributes based on the improved Gini–Simpson index. Soft Computing, 23(24), 13449–13458. https://doi.org/10.1007/s00500-019-03883-x
  • Maleki, H., & Zahir, S. (2012). A Comprehensive Literature Review of the Rank Reversal Phenomenon in the Analytic Hierarchy Process. Journal of Multi-Criteria Decision Analysis, 20(3–4), 141–155. https://doi.org/10.1002/mcda.1479
  • Mousavi-Nasab, S. H., & Sotoudeh-Anvari, A. (2018). A new multi-criteria decision making approach for sustainable material selection problem: A critical study on rank reversal problem. Journal of Cleaner Production, 182, 466–484. https://doi.org/10.1016/j.jclepro.2018.02.062
  • Mufazzal, S., & Muzakkir, S. (2018). A new multi-criterion decision making (MCDM) method based on proximity indexed value for minimizing rank reversals. Computers & Industrial Engineering, 119, 427–438. https://doi.org/10.1016/j.cie.2018.03.045
  • Mukhametzyanov, I. (2021). Specific character of objective methods for determining weights of criteria in MCDM problems: Entropy, CRITIC and SD. Decision Making: Applications in Management and Engineering, 4(2), 76–105. https://doi.org/10.31181/dmame210402076i
  • Munier, N. (2016). A New Approach to the Rank Reversal Phenomenon in MCDM with the SIMUS Method. Multiple Criteria Decision Making, 11, 137–152. https://doi.org/10.22367/mcdm.2016.11.09
  • Nadkarni, R. R., & Puthuvayi, B. (2020). A comprehensive literature review of Multi-Criteria Decision Making methods in heritage buildings. Journal of Building Engineering, 32, 101814. https://doi.org/10.1016/j.jobe.2020.101814
  • Nazari-Shirkouhi, S., Ansarinejad, A., Miri-Nargesi, S., Dalfard, V. M., & Rezaie, K. (2011). Information Systems Outsourcing Decisions Under Fuzzy Group Decision Making Approach. International Journal of Information Technology & Decision Making, 10(6), 989–1022. https://doi.org/10.1142/s0219622011004683
  • Odu, G. (2019). Weighting methods for multi-criteria decision making technique. Journal of Applied Sciences and Environmental Management, 23(8), 1449. https://doi.org/10.4314/jasem.v23i8.7
  • Paul, A., Shukla, N., Paul, S. K., & Trianni, A. (2021). Sustainable Supply Chain Management and Multi-Criteria Decision-Making Methods: A Systematic Review. Sustainability, 13(13), 7104. https://doi.org/10.3390/su13137104
  • Pelissari, R., Khan, S. A., & Ben-Amor, S. (2021). Application of Multi-Criteria Decision-Making Methods in Sustainable Manufacturing Management: A Systematic Literature Review and Analysis of the Prospects. International Journal of Information Technology & Decision Making, 21(2), 493–515. https://doi.org/10.1142/s0219622021300020
  • Rai, A., & Kim, J.-M. (2020). A novel health indicator based on the Lyapunov exponent, a probabilistic self-organizing map, and the Gini-Simpson index for calculating the RUL of bearings. Measurement, 164, 108002. https://doi.org/10.1016/j.measurement.2020.108002
  • Rao, C. (1982). Diversity and dissimilarity coefficients: A unified approach. Theoretical Population Biology, 21(1), 24–43. https://doi.org/10.1016/0040-5809(82)90004-1
  • Saaty, T. L., & Ergu, D. (2015). When is a Decision-Making Method Trustworthy? Criteria for Evaluating Multi-Criteria Decision-Making Methods. International Journal of Information Technology & Decision Making, 14(6), 1171–1187. https://doi.org/10.1142/s021962201550025x
  • Saaty, T. L., & Vargas, L. G. (1984). Inconsistency and rank preservation. Journal of Mathematical Psychology, 28(2), 205–214. https://doi.org/10.1016/0022-2496(84)90027-0
  • Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
  • Sidhu, A. S., Singh, S., & Kumar, R. (2022). Bibliometric analysis of entropy weights method for multi-objective optimization in machining operations. Materials Today: Proceedings, 50, 1248–1255. https://doi.org/10.1016/j.matpr.2021.08.132
  • Stojčić, M., Zavadskas, E. K., Pamučar, D., Stević, Ž., & Mardani, A. (2019). Application of MCDM Methods in Sustainability Engineering: A Literature Review 2008–2018. Symmetry, 11(3), 350. https://doi.org/10.3390/sym11030350
  • Triantaphyllou, E., & Mann, S. H. (1989). An examination of the effectiveness of multi-dimensional decision-making methods: A decision-making paradox. Decision Support Systems, 5(3), 303–312. https://doi.org/10.1016/0167-9236(89)90037-7
  • Unhelkar, B., Joshi, S., Sharma, M., Prakash, S., Mani, A. K., & Prasad, M. (2022). Enhancing supply chain performance using RFID technology and decision support systems in the industry 4.0–A systematic literature review. International Journal of Information Management Data Insights, 2(2), 100084. https://doi.org/10.1016/j.jjimei.2022.100084
  • Verly, C., & Smet, Y. D. (2013). Some results about rank reversal instances in the PROMETHEE methods. International Journal of Multicriteria Decision Making, 3(4), 325. https://doi.org/10.1504/ijmcdm.2013.056781
  • Wang, Y.-M., & Luo, Y. (2009). On rank reversal in decision analysis. Mathematical and Computer Modelling, 49(5–6), 1221–1229. https://doi.org/10.1016/j.mcm.2008.06.019
  • Wang, Y.-M., & Luo, Y. (2010). Integration of correlations with standard deviations for determining attribute weights in multiple attribute decision making. Mathematical and Computer Modelling, 51(1–2), 1–12. https://doi.org/10.1016/j.mcm.2009.07.016
  • Wei, G. (2016). Picture Fuzzy Cross-entropy for Multiple Attribute Decision Making Problems. Journal of Business Economics and Management, 17(4), 491–502. https://doi.org/10.3846/16111699.2016.1197147
  • Yager, R. (1988). On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Transactions on Systems, Man, And Cybernetics, 18(1), 183–190. https://doi.org/10.1109/21.87068
  • Yager, R. (1995). Measures of entropy and fuzziness related to aggregation operators. Information Sciences, 82(3–4), 147–166. https://doi.org/10.1016/0020-0255(94)00030-f
  • Yalcin, A. S., Kilic, H. S., & Delen, D. (2022). The use of multi-criteria decision-making methods in business analytics: A comprehensive literature review. Technological Forecasting and Social Change, 174, 121193. https://doi.org/10.1016/j.techfore.2021.121193
  • Yannis, G., Kopsacheili, A., Dragomanovits, A., & Petraki, V. (2020). State-of-the-art review on multi-criteria decision-making in the transport sector. Journal of Traffic and Transportation Engineering (English Edition), 7(4), 413–431. https://doi.org/10.1016/j.jtte.2020.05.005
  • Yue, W., & Wang, Y. (2017). A new fuzzy multi-objective higher order moment portfolio selection model for diversified portfolios. Physica A: Statistical Mechanics and Its Applications, 465, 124–140. https://doi.org/10.1016/j.physa.2016.08.009
  • Zardari, N. H., Ahmed, K., Shirazi, S. M., & Yusop, Z. B. (2015). Weighting Methods and their Effects on Multi-Criteria Decision Making Model Outcomes in Water Resources Management. Springer International Publishing. https://doi.org/10.1007/978-3-319-12586-2
  • Zavadskas, E. K., & Podvezko, V. (2016). Integrated Determination of Objective Criteria Weights in MCDM. International Journal of Information Technology & Decision Making, 15(2), 267–283. https://doi.org/10.1142/s0219622016500036
  • Zavadskas, E. K., Turskis, Z., Antucheviciene, J., & Zakarevicius, A. (2012). Optimization of Weighted Aggregated Sum Product Assessment. Elektronika Ir Elektrotechnika, 122(6), 3–6. https://doi.org/10.5755/j01.eee.122.6.1810
  • Zhu, X., Meng, X., & Zhang, M. (2021). Application of Multiple Criteria Decision Making Methods in Construction: A Systematic Literature Review. Journal of Civil Engineering and Management, 27(6), 372–403. https://doi.org/10.3846/jcem.2021.15260
  • Zhu, Y., Tian, D., & Yan, F. (2020). Effectiveness of Entropy Weight Method in Decision-Making. Mathematical Problems in Engineering, 2020, 1–5. https://doi.org/10.1155/2020/3564835

Volume 13, Issue 2, 2025

2025.13.02.OR.01

alphanumeric journal

Volume 13, Issue 2, 2025

Pages 55-76

Received: March 7, 2025

Accepted: Nov. 28, 2025

Published: Dec. 31, 2025

Full Text [1.3 MB]

2025 Pala, O.

This is an Open Access article, licensed under Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons Attribution licence

scan QR code to access this article from your mobile device


Contact Us

Faculty of Transportation and Logistics, Istanbul University
Beyazit Campus 34452 Fatih/Istanbul/Türkiye

Bahadır Fatih Yıldırım, Ph.D.
editor@alphanumericjournal.com
+ 90 (212) 440 00 00 - 13219

alphanumeric journal

alphanumeric journal has been publishing as "International Peer-Reviewed Journal" every six months since 2013. alphanumeric serves as a vehicle for researchers and practitioners in the field of quantitative methods, and is enabling a process of sharing in all fields related to the operations research, statistics, econometrics and management informations systems in order to enhance the quality on a globe scale.