• ISSN: 2148-2225 (online)

Ulaştırma ve Lojistik Kongreleri

alphanumeric journal

The Journal of Operations Research, Statistics, Econometrics and Management Information Systems

Zero Emission Electric Vehicle Selection Using the MEREC-Based CoCoSo Method

bib

Algın Okursoy, Ph.D.

Didem Tezsürücü Çoşansu, Ph.D.


Abstract

Electric vehicles are a good alternative to traditional fossil fuel vehicles with their cheap maintenance costs, low consumption, and environmentally friendly technologies. Considering that three-quarters of today's greenhouse gas emissions originate from transportation, the increase in the use of electric vehicles will greatly contribute to the achievement of decreasing environmental issues. In this study, it is aimed to rank zero-emission SUV-type electric vehicles that all are available for sale in Turkey with MEREC-based CoCoSo. In the study, vehicles are considered to an evaluation in four different scenarios, where they are combined, urban and highway travel situations and performance oriented. In each scenario, the Scenarios were evaluated under two headings with and without the price criterion. When the results are examined, it has been determined that the vehicles that are thought to have economical prices are in the last place in the rankings made with the CoCoSo method by objective weights.

Keywords: CoCoSo, Full-Battery Electric Vehicle, MEREC, Multi Criteria Decision Making

Jel Classification: C61, C72, G11


Suggested citation

Okursoy, A. & Tezsürücü Çoşansu, D. (). Zero Emission Electric Vehicle Selection Using the MEREC-Based CoCoSo Method. Alphanumeric Journal, 12(1), 39-58. https://doi.org/10.17093/alphanumeric.1451556

References

  • Ahn, B. S. (2011). Compatible weighting method with rank order centroid: Maximum entropy ordered weighted averaging approach. European Journal of Operational Research, 212(3), 552–559. https://doi.org/10.1016/j.ejor.2011.02.017
  • Alahyari, A., Fotuhi-Firuzabad, M., & Rastegar, M. (2014). Incorporating Customer Reliability Cost in PEV Charge Scheduling Schemes Considering Vehicle to Home Capability. IEEE Transactions on Vehicular Technology, 1–2. https://doi.org/10.1109/tvt.2014.2352413
  • Aldian, A., & Taylor, M. A. P. (2005). A consistent method to determine flexible criteria weights for multicriteria transport project evaluation in developing countries. Eastern Asia Society for Transportation Studies, 6, 3948–3963. https://doi.org/10.11175/easts.6.3948
  • Altıntaş, F. F. (2021). G7 ülkelerinin bilgi performanslarının analizi: COCOSO yöntemi ile bir uygulama. Journal of Life Economics, 8(3), 337–347. https://doi.org/10.15637/jlecon.8.3.06
  • Biswas, T. K., & Das, M. C. (2018a). Selection of hybrid vehicle for green environment using multi-attributive border approximation area comparison method. Management Science Letters, 121–130. https://doi.org/10.5267/j.msl.2017.11.004
  • Biswas, T. K., & Das, M. C. (2018b). Selection of Commercially Available Electric Vehicle using Fuzzy AHP-MABAC. Journal of the Institution of Engineers (India): Series C, 100(3), 531–537. https://doi.org/10.1007/s40032-018-0481-3
  • Bošković, S., Švadlenka, L., Jovčić, S., Dobrodolac, M., Simić, V., & Bacanin, N. (2023). An Alternative Ranking Order Method Accounting for Two-Step Normalization (AROMAN)–A Case Study of the Electric Vehicle Selection Problem. IEEE Access, 11, 39496–39507. https://doi.org/10.1109/access.2023.3265818
  • Büyüközkan, G., & Görener, A. (2015). Evaluation of product development partners using an integrated AHP-VIKOR model. Kybernetes, 44(2), 220–237. https://doi.org/10.1108/k-01-2014-0019
  • Cheng, L., Chang, Y., Wu, Q., Lin, W., & Singh, C. (2014). Evaluating Charging Service Reliability for Plug-In EVs From the Distribution Network Aspect. IEEE Transactions on Sustainable Energy, 5(4), 1287–1296. https://doi.org/10.1109/tste.2014.2348575
  • Çoşkun, İ. T. (2022). Çok Kriterli Karar Verme Teknikleri İle Elektrikli Otomobil Seçimi: SD-MULTIMOORA Yaklaşımı. 3. Sektör Sosyal Ekonomi Dergisi. https://doi.org/10.15659/3.sektor-sosyal-ekonomi.22.01.1735
  • Das, M. C., Pandey, A., Mahato, A. K., & Singh, R. K. (2019). Comparative performance of electric vehicles using evaluation of mixed data. OPSEARCH, 56(3), 1067–1090. https://doi.org/10.1007/s12597-019-00398-9
  • Demir, M. F., & Kaymaz, H. (2020). Elektrikli Otomobiller için Çekiş Motor Tip Seçimi. Marmara University, 2(1), 35–41. https://doi.org/10.35333/porta.2020.211
  • Diakoulaki, D., Mavrotas, G., & Papayannakis, L. (1995). Determining objective weights in multiple criteria problems: The criticmethod. Computers & Operations Research, 22(7), 763–770. https://doi.org/10.1016/0305-0548(94)00059-h
  • Ecer, F. (2021). A consolidated MCDM framework for performance assessment of battery electric vehicles based on ranking strategies. Renewable and Sustainable Energy Reviews, 143, 110916–110917. https://doi.org/10.1016/j.rser.2021.110916
  • Gavcar, E., & Kara, N. (2020). Elektrikli Otomobil Seçiminde Entropi ve TOPSIS Yöntemlerinin Uygulanması. İş Ve İnsan Dergisi,7(2), 351–359. https://doi.org/10.18394/iid.695702
  • Ginevčius, R. (2011). A new determining method for the criteria weights in multicriteria evaluation. International Journal ofInformation Technology & Decision Making, 10(6), 1067–1095. https://doi.org/10.1142/s0219622011004713
  • Golui, S., Mahapatra, B. S., & Mahapatra, G. S. (2024). A new correlation-based measure on Fermatean fuzzy applied on multi-criteria decision making for electric vehicle selection. Expert Systems with Applications, 237, 121605–121606. https://doi.org/10.1016/j.eswa.2023.121605
  • İşen, E., & Tarlak, H. (2018). Elektrikli Araçlar ve Akü Şarj Sistemleri. Kırklareli Üniversitesi Mühendislik Ve Fen Bilimleri Dergisi, 4(1), 124–141.
  • Işılak, C. (2020). Elektrikli araçların konvansiyonel araçlara göre gövde, şasi ve iç trim açısından tasarım farklılıkları. Uluslararası Bilim, Teknoloji Ve Tasarım Dergisi, 1(1), 46–58.
  • Kerem, A. (2014). Elektrikli Araç Teknolojisinin Gelişimi ve Gelecek Beklentileri. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(1), 1–13.
  • Khan, F., Ali, Y., & Khan, A. U. (2020). Sustainable hybrid electric vehicle selection in the context of a developing country. Air Quality, Atmosphere & Health, 13(4), 489–499. https://doi.org/10.1007/s11869-020-00812-y
  • Opricovic, S., & Tzeng, G.-H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156(2), 445–455. https://doi.org/10.1016/s0377-2217(03)00020-1
  • Özcan, M., & Oral, B. (2018). Elektrikli Araç Mimarileri ve Batarya Teknolojilerinin Değerlendirilmesi. Proceedings of the International Eurasian Conference on Science, Engineering and Technology, 1015–1023.
  • Paoli, L., Dasgupta, A., & McBain, S. (2022). Electric Vehicles. International Energy Agency: IEA.
  • Popović, M. (2021). An MCDM approach for personnel selection using the CoCoSo method. Journal of Process Management. New Technologies, 9(3–4), 78–88. https://doi.org/10.5937/jouproman2103078p
  • Ritchie, H., Rosado, P., & Roser, M. (2023). Energy. Our World in Data.
  • Sonar, H. C., & Kulkarni, S. D. (2021). An Integrated AHP-MABAC Approach for Electric Vehicle Selection. Research in Transportation Business & Management, 41, 100665–100666. https://doi.org/10.1016/j.rtbm.2021.100665
  • Tian, Z.-p., Liang, H.-m., Nie, R.-x., Wang, X.-k., & Wang, J.-q. (2023). Data-driven multi-criteria decision support method for electric vehicle selection. Computers & Industrial Engineering, 177, 109061–109062. https://doi.org/10.1016/j.cie.2023.109061
  • Tie, S. F., & Tan, C. W. (2013). A review of energy sources and energy management system in electric vehicles. Renewable and Sustainable Energy Reviews, 20, 82–102. https://doi.org/10.1016/j.rser.2012.11.077
  • Topal, A. (2021). Çok kriterli karar verme analizi ile elektrik üretim şirketlerinin finansal performans analizi: Entropi tabanlı CoCoSo yöntemi. Business & Management Studies: An International Journal, 9(2), 532–546. https://doi.org/10.15295/bmij.v9i2.1794
  • Wang, J.-J., Jing, Y.-Y., Zhang, C.-F., & Zhao, J.-H. (2009). Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renewable and Sustainable Energy Reviews, 13(9), 2263–2278. https://doi.org/10.1016/j.rser.2009.06.021
  • Yang, G.-l., Yang, J.-B., Xu, D.-L., & Khoveyni, M. (2017). A three-stage hybrid approach for weight assignment in MADM. Omega, 71, 93–105. https://doi.org/10.1016/j.omega.2016.09.011
  • Yazdani, M., Zarate, P., Kazimieras Zavadskas, E., & Turskis, Z. (2019). A combined compromise solution (CoCoSo) method for multi-criteria decision-making problems. Management Decision, 57(9), 2501–2519. https://doi.org/10.1108/md-05-2017-0458
  • Zardari, N. H., Ahmed, K., Shirazi, S. M., & Yusop, Z. B. (2015). Weighting Methods and their Effects on Multi-Criteria Decision Making Model Outcomes in Water Resources Management. Springer International Publishing. https://doi.org/10.1007/978-3-319-12586-2

Volume 12, Issue 1, 2024

2024.12.01.OR.04

alphanumeric journal

Volume 12, Issue 1, 2024

Pages 39-58

Received: March 24, 2024

Accepted: July 1, 2024

Published: July 20, 2024

Full Text [669.3 KB]

2024 Okursoy, A., Tezsürücü Çoşansu, D.

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Creative Commons Attribution licence

scan QR code to access this article from your mobile device


Contact Us

Faculty of Transportation and Logistics, Istanbul University
Beyazit Campus 34452 Fatih/Istanbul/TURKEY

Bahadır Fatih Yıldırım, Ph.D.
editor@alphanumericjournal.com
+ 90 (212) 440 00 00 - 13219

alphanumeric journal

alphanumeric journal has been publishing as "International Peer-Reviewed Journal" every six months since 2013. alphanumeric serves as a vehicle for researchers and practitioners in the field of quantitative methods, and is enabling a process of sharing in all fields related to the operations research, statistics, econometrics and management informations systems in order to enhance the quality on a globe scale.