• ISSN: 2148-2225 (online)

Ulaştırma ve Lojistik Kongreleri

alphanumeric journal

The Journal of Operations Research, Statistics, Econometrics and Management Information Systems

Some Robust Estimation Methods and Their Applications


Tolga Zaman

Kamil Alakuş


This study examines robust regression methods which are used for the solution of problems caused by the situations in which the assumptions of LSM technique, which is commonly used for the prediction of linear regression models, cannot be used. Robust estimators are not influenced by small deviations and discrepancies. For this purpose, some robust regression techniques which are used in situations in which the assumptions cannot be made were introduced and parameter estimation algorithms of these techniques were analyzed. Regression models of the methods of Lad, Weighted –M regression, Theil regression and Least Median Squares, coefficients of determination and average absolute deviations were calculated and the results were discussed as to which of these methods gave better results.

Keywords: Average Absolute Deviations, Coefficient of Determination, Least Square Errors Methods, Robust Regression Methods

Jel Classification: C40

Bazı Robust Tahmin Yöntemleri ve Uygulamaları


Bu çalışmada doğrusal regresyon modellerinin tahmininde yaygın olarak kullanılan EKK tekniğinin varsayımlarının sağlanmamasından kaynaklanan problemlerin çözümü için kullanılan Robust regresyon yöntemleri incelenmiştir. Robust tahmin ediciler küçük sapmalardan, aykırılıklardan etkilenmezler. Bu amaçla, çalışmada varsayımların sağlanmadığı durumlarda kullanılan bazı robust regresyon teknikleri tanıtılmıştır ve bu tekniklere ait parametre tahmin algoritmaları incelenmiştir. Uygulamada Lad, Ağırlıklı –M regresyon, Theil regresyon ve En küçük Medyan Kareler yöntemlerine ait regresyon modeli, belirleme katsayıları ve ortalama mutlak sapmalar hesaplanmış olup, bu tahmin edicilerden hangisinin daha iyi sonuç verdiği tartışılmıştır.

Anahtar Kelimeler: Belirleme Katsayısı, En Küçük Kareler Metodu, Ortalama Mutlak Sapma, Robust Regresyon Metodları

Suggested citation

Zaman, T. & Alakuş, K. (). Some Robust Estimation Methods and Their Applications. Alphanumeric Journal, 3(2), 73-82. http://dx.doi.org/10.17093/aj.2015.3.2.5000152703


  • Birkes, D. and Dodge, Y. (1993), Alternative Methods of Regression. NY: Wiley.
  • Clarke, G. M. and Cooke, D., (1992). A Basic Course in Statistics. 3rd Edition. P. 354-356, Exercises on Chapter 20, Excercis No: 9.
  • Dietz, E. J. (1989), Teaching Regression in a Nonparametric Statistics Course. The American Statistician. 43, 35-40.
  • Ergül, B. (2006), Robust Regresyon ve Uygulamaları. Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü İstatistik Anabilim Dalı Yüksek Lisans Tezi, Eskişehir.
  • G. E., Granato. (2006), Kendall-Theil Robust Line (KTRLine-version 1.0) –A Visual Basic Program for Calculating and Graphing Robust Nonparametric Estimates of Linear-Regression Coefficients Between Two Continous Variables. Chapter 7, Section A, Statistical Anlaysis, Book 4, Hydrologic Analysis and Interpretation. U. S. Geological Survey Techniques and Methods 4-A7.
  • Genceli, M. (2001), Ekonomide İstatistik İlkeler, İstanbul, Filiz Kitabevi.
  • Huber, P. J. (1964), Robust Estimation of a Location Parameter. Ann. Math. Statist., 35, 73-101.
  • Jabr, R. (2005), Power System Huber-M Estimation with Equilaty and Inequality Constraints, Electric Power System Research, 74, 239-246.
  • Kıroğlu, G. (2001), Uygulamalı Parametrik Olmayan İstatistiksel Yöntemler. Mimar Sinan Üniversitesi Fen-Edebiyat Fakültesi, İstanbul.
  • N. A., Erilli and K., Alakus. (2014), Non-Parametrıc Regression Estimation for Data With Equal Values. European Scientific Journal. February. Edition Vol. 10, No.4 ISSN:1857-7881 (Prınt) e-ISSN 1857-7434.
  • Neter, J., Kutner, M. H., Nachtheim, C. J., Wasserman, W. (1993), Applied Linear Statistical Methods, Wiley.
  • Rousseeuw, P. J. and Leroy, A. M. (1987), Robust Regression and Outlier Detection. New York: John Wiley& Sons, Inc.
  • R. R., Wilcox. (2013), A Heteroscedastic Method for Comparing Regression Lines at Specified Design Points When Using a Robust Regression Estimator. Journal of Data Science 11,281-291.
  • Sen, P. K. (1968), Estimates of the regression coefficient based on Kendall’s tau., J.Amer. Statist. Assoc., 63, 1379-1389.
  • Sprent, R. (1993), Applied nonparametric statistical methods. 2 nd Ed. CRC Press, NY.
  • Theil, H. (1950), A rank-invariant method of lineer and polynomial regression analysis, I. Proc. Kon. Ned. Akad. v . Wetensch. A53, 386-392.
  • Yorulmaz, Ö. (2003), Robust Regresyon ve Mathematica Uygulamaları. Marmara Üniversitesi, Yüksek Lisans Tezi, Ankara.
  • Wilcox, R. (1998), Simulations on the Theil-Sen regression estimator with right-censored data. Stat.& Prob. Letters 39, 43-47.

Volume 3, Issue 2, 2015


alphanumeric journal

Volume 3, Issue 2, 2015

Pages 73-82

Received: Nov. 16, 2015

Accepted: Dec. 26, 2016

Published: Dec. 31, 2016

Full Text [833.6 KB]

2015 Zaman, T., Alakuş, K.

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Creative Commons Attribution licence

scan QR code to access this article from your mobile device

Contact Us

Faculty of Transportation and Logistics, Istanbul University
Beyazit Campus 34452 Fatih/Istanbul/TURKEY

Bahadır Fatih Yıldırım, Ph.D.
+ 90 (212) 440 00 00 - 13219

alphanumeric journal

alphanumeric journal has been publishing as "International Peer-Reviewed Journal" every six months since 2013. alphanumeric serves as a vehicle for researchers and practitioners in the field of quantitative methods, and is enabling a process of sharing in all fields related to the operations research, statistics, econometrics and management informations systems in order to enhance the quality on a globe scale.