In the study, the effects of university students' environmental concerns, nuclear power plants and renewable energy attitudes on sustainable consumption behavior were investigated with partial least squares structural equation modeling (PLS-SEM). For this purpose, a research model was designed with literature search and various hypotheses were developed to test the model relations. In the proposed model, sustainable consumption behavior is defined as endogenous, environmental concern is exogenous, and others are defined as endogenous latent variables. In the study, the proposed research model was analyzed using PLS-SEM and the suitability of the proposed model was evaluated according to various compliance measures. The model was analyzed separately for statistics department and engineering faculty students. In the statistical department model, one-unit increase in environmental concern causes 0.39 unit, 0.60 unit increase in attitudes towards economic and environmental dimension of renewable energy, respectively. In the engineering students model, these coefficients were calculated as 0.40 and 0.57, respectively. In addition, when the effect of economic and environmental attitudes towards renewable energy on sustainable consumption behavior is analyzed, it is determined that only economic dimension is meaningful (0.46) for statistical section and both dimensions are significant for engineering students. It was calculated that a one-unit increase in the attitudes of the engineering students towards the economic and environmental dimensions of renewable energy would lead to an increase of 0.24 and 0.23 units respectively in the sustainable consumption behavior.
Kısmi En Küçük Kareler Yapısal Eşitlik Modellemesiyle (PLS-YEM) Nükleer ve Yenilenebilir Enerjiye İlişkin Tutumların Araştırılması
Öz
Çalışmada, üniversite öğrencilerinin çevresel kaygılarının, nükleer enerji santrallerine ve yenilenebilir enerjiye ilişkin tutumlarının sürdürülebilir tüketim davranışlarına etkisi kısmi en küçük kareler yapısal eşitlik modellemesiyle (PLS-YEM) ile araştırılmıştır. Bu amaçla önce, literatür taraması yardımıyla bir araştırma modeli tasarlanmış ve modeldeki ilişkileri sınamak için çeşitli hipotezler oluşturulmuştur. Önerilen modelde sürdürülebilir tüketim davranışı içsel, çevresel kaygı dışsal ve diğerleri aracı içsel gizil değişkendenler olarak tanımlanmıştır. Çalışmada, önerilen araştırma modeli PLS-YEM kullanılarak analiz edilmiş ve önerilen modelin uygunluğu çeşitli uyum ölçütlerine göre değerlendirilmiştir. Model, istatistik bölümü ve mühendislik fakültesi öğrencileri için ayrı ayrı analiz edilmiştir. İstatistik bölümü modelinde, çevresel kaygıdaki bir birimlik artış, yenilenebilir enerjinin ekonomik ve çevre boyutuna yönelik tutumlarda sırasıyla 0,39 birim, 0,60 birim artışa neden olmaktadır. Mühendislik öğrencileri modelinde ise bu katsayılar sırasıyla 0,40 ve 0,57 olarak hesaplanmıştır. Ayrıca, yenilenebilir enerjiye yönelik ekonomik ve çevre tutumların, sürdürülebilir tüketim davranışına etkisi incelendiğinde, istatistik bölümü için sadece ekonomik boyutun anlamlı olduğu (0,46), mühendislik öğrencilerinde ise her iki boyutun anlamlı olduğu belirlenmiştir. Mühendislik öğrencilerinin yenilenebilir enerjinin ekonomik ve çevre boyutuna yönelik tutumlarındaki bir birimlik artışın, sürdürülebilir tüketim davranışında sırasıyla 0,24 ve 0,23 birim artışa neden olacağı hesaplanmıştır.
Akyüz, E. (2015). Türkiye’nin Enerji Görünümü ve Yenilenebilir Enerji Kaynaklarının Önemi. Akademik Bakış Dergisi, 49:494-504.
Alam, S. S. ve Rashid, M. (2012). Intention to Use Renewable Energy: Mediating Role of Attitude. Energy Research Journal, 3(2):37-44.
Arı, E. ve Yılmaz, V. (2017). Effects of environmental illiteracy and environmental awareness among middle school students on environmental behavior. Environment, Development and Sustainability, 19(5), 1779-1793., Doi: 10.1007/s10668-016-9826-3
Arslan, M.S.T., Yılmaz, V. ve Aksoy, H.K. (2012). Structural Equation Model for Environmentally Conscious Purchasing Behavior. International Journal of Environmental Research, 6(1), 323-344.
Chin, W.W., (1998). The Partial Least Squares Approach for Structural Equation Modeling. Mahwah, NJ: Lawrence Erlbaum Associates.
Cohen, J. E. (1988). Statistical Power Analysis for the Behavioral Sciences. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
Çelikler, D., Aksan, Z. (2016) The Development of an Attitude Scale to Asses the Attitudes of High School Students Towards Renewable Energy Sources. Renewable and Sustainable Energy Reviews, 54:1092-1098.
Dalton, G. J., Lewis T. (2011). Metrics for measuring job creation by renewable energy technologies, using Ireland as a case study. Renewable and Sustainable Energy Reviews, 15(4):2123–2133.
Erdal, L. (2012). Türkiye’de Yenilenebilir Enerji Yatırımları ve İstihdam Yaratma Potansiyeli, Sosyal ve Beşeri Bilimler Dergisi, 4(1):171-181.
Fornell, C., Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1):39-50.
Fornell, C., Bookstein, F. (1982). A comparison analysis of two structural equation models: Lisrel and pls applied to market data. In C. Fornell (Ed.), A Second Generation of Multivariate Analysis (pp. 290–312). New York: Greenwood.
Garcı́a-Machado, J. J., Jachowicz, A. (2017). A Comparison Using PLS-MGA Between PIGS and V4 Countries’ Financial Systems. International Research Journal of Finance and Economics, 162: 387-40.
Hair, J., Anderson, R., Tatham, R., & Black, W. (1998). Multivariate Data Analysis (5th ed.). Englewood Cliffs: Prentice Hall.
Hair, J. F., Ringle, C. M., Sarstedt, M. (2013). Editorial - Partial Least Squares Structural Equation Modeling: Rigorous Applications, Better Results and Higher Acceptance Long Range Planning, 46(1-2):1-12.
Kline, R.B. (2011) Principles and Practice of Structural Equation Modeling. Guilford Press, New York.
Lund P.D. (2009). Effects of energy policies on industry expansion in renewable energy. Renewable Energy, 34(1):53–64.
Lohmöller, J. B. (1984). LVPLS Program Manual Version 1.6. Zentralarchiv fr Empirische Sozialforschung. Koln: Universitat zu Koln.
Lohmöller, J. B. (1989). Latent variables path modeling with partial least squares. Heidelberg:Physica.
Moreno, B. ve Lopez, A. J. (2008). The effect of renewable energy on employment, The case of Asturias (Spain). Renewable and Sustainable Energy Reviews, 12(3):732–751.
Paska, J., Salek M., Surma, T. (2009). Current status and perspectives of renewable energy sources in Poland. Renewable and Sustainable Energy Reviews, 13(1):142–154.
Schneeweiß, H. (1991). Models with latent variables: LISREL versus PLS. Statistica Neerlandica, 45(2):145–157.
Sellin, N. (1989). Partial least square modeling in research on educational achievement. In W. Bos, & R. H. Lehmann (Eds.), Reflections on educational achievement, Papers in Honour of T. Neville Postlethwaite (pp. 256–267). New York: Waxmann Munster.
Stoutenborough, J. W., Sturgess, S. G., Vedlitz, A. (2013) Knowledge, Risk, and Policy Support: Public Perceptions of Nuclear Power. Energy Policy, 62:176-184.
Spence, A., Poortinga, W., Pidgeon, N. & Lorenzoni, I. (2010). Public perceptions of energy choices: The influence of beliefs about climate change and the environment. Energy&Environment, 21(5): 385-407.
Temme, D., Kreis, H., Hildebrandt, L. (2006). PLS Path Modeling-A Software Review. Institute of Marketing, Humboldt-Universität zu Berlin, Germany.
Tenenhaus, M. (1998). La R´egression PLS: th´eorie et pratique. Technip, Paris.
Tenenhaus, M. (1999). Lapproche PLS. Revue de Statistique Applique, 47(2), 5–40.
Tenenhaus, M., Vinzi, V. E., Chatelin, Y.-M., & Lauro, C. (2005). PLS path modeling. Computational Statistics & Data Analysis, 48(1), 159-205.
Vinzi, V. E., Trinchera, L., & Amato, S. (2010). PLS path modeling: from foundations to recent developments and open issues for model assessment and improvement. In: V. Esposito Vinzi,
Wold, H. (1982). Soft modeling, the basic design and some extensions. In K. G. Jreskog & H.Wold (Eds.), Systems under indirect observation, I–II. Amsterdam: North-Holland.
Wold, S., Martens, H., and Wold, H. (1983). The multivariate calibration problem in chemistry solved by the PLS method. In In: Ruhe, A., Kagstrom, B. (Eds.), Proceedings of the Conference on Matrix Pencils. Lectures Notes in Mathematics, Heidelberg. Springer.
Yılmaz, V., Can, Y., Şen, H. (2018). Küresel Isınma ve Küresel İklim Değişikliğine İlişkin Bilginin Kaygı ile Farkındalık Üzerine Etkisi: Bir Yapısal Eşitlik Model Önerisi. Researcher: Social Science Studies, 6(1):434-450.
Yücel, M., Altunkasa, F., Güçray, S., Uslu, C., Say, N. P. (2006). Adana’da Çevre Duyarlılığı Düzeyinin ve Geliştirme Olanaklarının Araştırılması. Akdeniz Üniversitesi Ziraat Fakültesi Dergisi, 19(2):217-228.
Zyadin, A., Puhakka, A., Ahponen, P., Pelkonen, P. (2014). Secondary School Teachers’ Knowledge, Perceptions, and Attitudes Toward Renewable Energy in Jordan. Renewable Energy, 62:341-348.
alphanumeric journal has been publishing as "International Peer-Reviewed
Journal" every six months since 2013. alphanumeric serves as a vehicle for researchers and
practitioners in the field of quantitative methods, and is enabling a process of sharing in all
fields related to the operations research, statistics, econometrics and management informations
systems in order to enhance the quality on a globe scale.