• ISSN: 2148-2225 (online)

Ulaştırma ve Lojistik Kongreleri

alphanumeric journal

The Journal of Operations Research, Statistics, Econometrics and Management Information Systems

Comparison Of Periodic-Review Inventory Control Policies In A Serial Supply Chain


Nihan Kabadayı, Ph.D.

Timur Keskintürk, Ph.D.


Abstract

Supply chain management provides customers with the right product or service at a reasonable price, in the right place, at the right time, and with the best quality possible, thus increasing customer satisfaction. The inventory is held at the multiple sites in a supply chain. Effective and efficient management of inventory in the supply chain process has a significant impact on improving the ultimate customer service provided to the customer. Reducing inventory cost, which is a major part of total supply chain costs, will help provide products or services at a better price. This study aims to compare (R, S) and (R, S, Qmin) inventory control policies in a serial supply chain. We develop a simulation based genetic algorithm (GA) in order to find the optimal numerical "S" value that minimizes the total supply chain cost (TSCC) and compare our results between two methods.

Keywords: Genetic Algorithm, Inventory Management, Simulation-based Genetic Algorithm, Supply Chain Management

Jel Classification: M11

Seri Tedarik Zincirinde Periyodik Stok Kontrol Politikalarının Karşılaştırılması


Öz

Tedarik zinciri yönetimi, doğru ürün veya hizmetlerin mümkün olan en iyi kalitede, doğru zamanda, doğru yerde ve uygun fiyatlı olarak müşterilere sunulmasını sağlamakta ve bu sayede müşteri tatmininin arttırılmasına yardımcı olmaktadır. Tedarik zinciri içerisinde farklı kademelerde stok bulundurulmaktadır. Tedarik zinciri sürecinde etkili ve etkin bir stok yönetimi, müşterilere sunulan hizmetleri iyileştirilmesini sağlamaktadır. Tedarik zinciri maliyetlerinin içerisinde önemli bir paya sahip olan stok maliyetlerinin azaltılması ürün veya hizmetlerin daha uygun fiyatlarla müşterilere sunulmasına yardımcı olmaktadır. Bu çalışmada seri tedarik zincirinde, (R,S) ve (R, S, Qmin) stok kontrol politikalarının karşılaştırılması amaçlanmıştır. Bu stok kontrol yöntemleri uygulandığında, toplam tedarik zinciri maliyetlerinin minimize edilmesini sağlayan “S” değerinin optimal değerini bulabilmek için simülasyon temelli genetik algoritma (GA) kullanılmış ve iki stok kontrol politikasının uygulanmasının sonuçları karşılaştırılmıştır.

Anahtar Kelimeler: Genetik Algoritma, Simülasyon Temelli Genetik Algoritma, Stok Yönetimi, Tedarik Zinciri Yönetimi


Suggested citation

Kabadayı, N. & Keskintürk, T. (). Comparison Of Periodic-Review Inventory Control Policies In A Serial Supply Chain. Alphanumeric Journal, 3(2), 27-34. http://dx.doi.org/10.17093/aj.2015.3.2.5000148311

bibtex

References

  • Axsäter, S. (2007). Inventory control (Vol. 90). Springer Science & Business Media.
  • Axsäter, S., & Rosling, K. (1993). Notes: Installation vs. echelon stock policies for multilevel inventory control. Management Science, 39(10), 1274-1280.
  • Azadivar, F., & Tompkins, G. (1999). Simulation optimization with qualitative variables and structural model changes: A genetic algorithm approach. European Journal of Operational Research, 113(1), 169-182.
  • Chambers, J. (1995). Practical Handbook of Genetic Algorithms: Volume 2: New Frontiers, CRC-Press; 1 edition.
  • Chen, F. (1999). On (R, NQ) policies in serial inventory systems. In Quantitative models for supply chain management (pp. 71-109). Springer US.
  • Chopra S. & Meindl P. (2010). Supply Chain Management: Strategy, Planning and Operation, Prentice-Hall Inc., New Jersey.
  • Ding, H., Benyoucef, L., & Xie, X. (2006). A simulation-based multi-objective genetic algorithm approach for networked enterprises optimization. Engineering Applications of Artificial Intelligence, 19(6), 609-623.
  • Kapuscinski, R., & Tayur, S. (1999). Optimal policies and simulation-based optimization for capacitated production inventory systems. In Quantitative Models for Supply Chain Management (pp. 7-40). Springer US.
  • Kiesmüller, G. P., De Kok, A. G., & Dabia, S. (2011). Single item inventory control under periodic review and a minimum order quantity. International Journal of Production Economics, 133(1), 280-285.
  • Lee, H. L., & Billington, C. (1992). Managing supply chain inventory: pitfalls and opportunities. Sloan management review, 33(3).
  • Marseguerra, M., Zio, E., & Podofillini, L. (2002). Condition-based maintenance optimization by means of genetic algorithms and Monte Carlo simulation. Reliability Engineering & System Safety, 77(2), 151-165.
  • Nahmias S. (2009). Production and Operation Analysis, McGraw-Hill International edition, New York.
  • Petrovic, D., Roy, R., & Petrovic, R. (1998). Modelling and simulation of a supply chain in an uncertain environment. European journal of operational research, 109(2), 299-309.
  • Simchi-Levi D., Kaminsky P., Simchi-Levi E. (2000). Designing and Managing the Supply Chain, Irwin McGraw-Hill.
  • Talbi El-G. (2009). Metaheuristics, John Wiley & Sons, Inc.
  • Zhou, B., Zhao, Y., & Katehakis, M. N. (2007). Effective control policies for stochastic inventory systems with a minimum order quantity and linear costs. International Journal of Production Economics, 106(2), 523-531.

Volume 3, Issue 2, 2015

2015.03.02.OR.03

alphanumeric journal

Volume 3, Issue 2, 2015

Pages 27-34

Received: Oct. 23, 2015

Accepted: Dec. 25, 2015

Published: Dec. 31, 2015

Full Text [792.1 KB]

2015 Kabadayı, N., Keskintürk, T.

This is an Open Access article, licensed under Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons Attribution licence

scan QR code to access this article from your mobile device


Contact Us

Faculty of Transportation and Logistics, Istanbul University
Beyazit Campus 34452 Fatih/Istanbul/TURKEY

Bahadır Fatih Yıldırım, Ph.D.
editor@alphanumericjournal.com
+ 90 (212) 440 00 00 - 13219

alphanumeric journal

alphanumeric journal has been publishing as "International Peer-Reviewed Journal" every six months since 2013. alphanumeric serves as a vehicle for researchers and practitioners in the field of quantitative methods, and is enabling a process of sharing in all fields related to the operations research, statistics, econometrics and management informations systems in order to enhance the quality on a globe scale.