Evaluation of the effect of mobile applications on corporate reputation with artificial intelligence through user comments: E-Government case
Mehmet Kayakuş, Ph.D.
Author Profile
Mehmet Kayakuş, Ph.D.
Assoc. Prof., Department of Business Information Systems, Manavgat Faculty of Social and Human Sciences Akdeniz University, Antalya, Turkiye, mehmetkayakus@akdeniz.edu.tr
This study examines the impact of e-government mobile applications on corporate reputation through user comments. Today, when digitalisation is accelerating, public services offered through mobile applications directly affect user experiences and shape the reputation of institutions. 2000 user comments from the Google Play Store were analysed using artificial intelligence methods, text mining, and sentiment analysis techniques. It was determined that 45% of the comments were positive, 15% were negative, and 40% were neutral. Positive comments indicate that the application has a positive user perception in general. However, some users were dissatisfied due to technical problems. As a result of text mining, the most frequently mentioned words and phrases of users were analysed, and feedback was categorised through sentiment analysis. In this process, WordNet was used to extract word frequencies, TextBlob was applied to classify user comments into positive, negative, and neutral categories, and Seaborn visualisations such as word clouds were employed to illustrate the findings. The findings reveal the importance of mobile applications for the sustainability of digital public services. It is emphasised that the technical performance of the application should be improved to increase user satisfaction and strengthen institutional reputation.
Ahuja, S., & Dubey, G. (2017). Clustering and sentiment analysis on Twitter data. 2017 2nd International Conference on Telecommunication and Networks (TEL-NET), 1–5. https://doi.org/10.1109/tel-net.2017.8343568
Al Ali, F., Stephens, M., & Pereira, V. (2023). Government e-Services and Reputation. In Doing Business in the Middle East (pp. 235–252). Routledge. https://doi.org/10.4324/9781003005766-19
Al-Besher, A., & Kumar, K. (2022). Use of artificial intelligence to enhance e-government services. Measurement: Sensors, 24, 100484. https://doi.org/10.1016/j.measen.2022.100484
Alkan, Ö., & Ünver, Ş. (2020). Türkiye'de E-Devlet Hizmetlerinin Kullanımını Etkileyen Faktörlerin Analizi. Atatürk Üniversitesi İktisadi Ve İdari Bilimler Dergisi. https://doi.org/10.16951/atauniiibd.757571
Ateş, H., & Yavuz, Ö. (2019). Elektronik Devletten Mobil Devlete Geçiş: Fırsatlar, Tehditler ve Uygulama Örnekleri. Bilgi Ekonomisi Ve Yönetimi Dergisi, 14(2), 155–177.
Bertot, J. C., Jaeger, P. T., & Grimes, J. M. (2010). Using ICTs to create a culture of transparency: E-government and social media as openness and anti-corruption tools for societies. Government Information Quarterly, 27(3), 264–271. https://doi.org/10.1016/j.giq.2010.03.001
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation. Journal of Machine Learning Research, 3, 993–1022.
Çankaya Kurnaz, S. (2024). Türkiye'nin e-devlet olgunluk düzeyi: BM e-devlet gelişmişlik endeksi üzerinden bir değerlendirme. Yönetim Bilimleri Dergisi. https://doi.org/10.35408/comuybd.1513698
Carter, L., & Bélanger, F. (2005). The utilization of e-government services: citizen trust, innovation and acceptance factors⁎. Information Systems Journal, 15(1), 5–25. https://doi.org/10.1111/j.1365-2575.2005.00183.x
Castilla, R., Pacheco, A., & Franco, J. (2023). Digital government: Mobile applications and their impact on access to public information. Softwarex, 22, 101382. https://doi.org/10.1016/j.softx.2023.101382
Çelen, F. K., Çelik, A., & Seferoğlu, S. S. (2011). Türkiye'deki e-Devlet Uygulamalarının Değerlendirilmesi. XIII. Akademik Bilişim Konferansı Bildirileri, 59–67.
Dijkmans, C., Kerkhof, P., & Beukeboom, C. J. (2015). A stage to engage: Social media use and corporate reputation. Tourism Management, 47, 58–67. https://doi.org/10.1016/j.tourman.2014.09.005
Dowling, G. (2006). Reputation risk: it is the board's ultimate responsibility. Journal of Business Strategy, 27(2), 59–68. https://doi.org/10.1108/02756660610650055
Feldman, R., & Sanger, J. (2006). The Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data. Cambridge University Press. https://doi.org/10.1017/cbo9780511546914
Fombrun, C. J. (1996). Reputation: Realizing Value from the Corporate Image. Harvard Business School Press.
Fombrun, C. J., & Riel, C. B. M. v. (2004). Fame & fortune: how successful companies build winning reputations. Pearson Education.
Gebauer, J., Tang, Y., & Baimai, C. (2007). User requirements of mobile technology: results from a content analysis of user reviews. Information Systems and E-Business Management, 6(4), 361–384. https://doi.org/10.1007/s10257-007-0074-9
Gupta, K. P., Singh, S., & Bhaskar, P. (2016). Citizen adoption of e-government: a literature review and conceptual framework. Electronic Government, An International Journal, 12(2), 160. https://doi.org/10.1504/eg.2016.076134
Gupta, S., & Mathur, N. (2024). User-centred exploration of m-governance adoption: identifying and analysing determinants. 18. https://doi.org/10.1108/TG-01-2024-0027
Hakimi, M., Salem, M. H., Miskinyar, M. S., & Sazish, B. (2023). Integrating Artificial Intelligence into E-Government: Navigating Challenges, Opportunities, and Policy Implications. International Journal of Academic and Practical Research, 2(2), 11–21.
Heimerl, F., Lohmann, S., Lange, S., & Ertl, T. (2014). Word Cloud Explorer: Text Analytics Based on Word Clouds. 2014 47th Hawaii International Conference on System Sciences, 1833–1842. https://doi.org/10.1109/hicss.2014.231
Kavut, S. (2024). Toplumların Dijital Dönüşüm Aracı Olarak Yapay Zekâ Çalışmaları: Türkiye'nin ve Türk Devletleri Teşkilatının Yapay Zekâ Kullanımı Üzerine Bir Analiz. Erciyes İletişim Dergisi, 11(1), 325–344. https://doi.org/10.17680/erciyesiletisim.1346576
Kayakuş, M., & Yiğit Açıkgöz, F. (2023). Twitter'da Makine Öğrenmesi Yöntemleriyle Sahte Haber Tespiti. Abant Sosyal Bilimler Dergisi, 23(2), 1017–1027. https://doi.org/10.11616/asbi.1266179
Kim, J., & Lennon, S. J. (2013). Effects of reputation and website quality on online consumers' emotion, perceived risk and purchase intention: Based on the stimulus-organism-response model. Journal of Research in Interactive Marketing, 7(1), 33–56. https://doi.org/10.1108/17505931311316734
Liu, B. (2012). Sentiment Analysis and Opinion Mining (1st ed. 2012). Springer International Publishing.
Loria, S., Keen, P., Honnibal, M., Yankovsky, R., Karesh, D., & Dempsey, E. (2014, ). Textblob: Simplified Text Processing. https://textblob.readthedocs.io/en/dev/
Melin, U., Axelsson, K., & Söderström, F. (2016). Managing the development of e-ID in a public e-service context: Challenges and path dependencies from a life-cycle perspective. Transforming Government: People, Process and Policy, 10(1), 72–98. https://doi.org/10.1108/tg-11-2013-0046
Moon, M. J. (2002). The Evolution of E-Government among Municipalities: Rhetoric or Reality?. Public Administration Review, 62(4), 424–433. https://doi.org/10.1111/0033-3352.00196
Naghizade, K., Karakethüdaoğlu, M., & Akbiyik, A. (2018, ). Mobil Uygulama Geliştirmede Geri Bildirimin Önemi: Türkiye E-Devlet Örneği. International Congress on Economics and Business 2018.
Nam, W., Lee, J., & Jang, B.-C. (2022). Text summarization of dialogue based on BERT. Journal of the Korea Society of Computer and Information, 27(8), 41–47. https://doi.org/10.9708/jksci.2022.27.08.041
Naralan, A. (2010). E-Devlet'e Etki Eden Faktörler. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 12(2), 457–468.
Ojo, A., Janowski, T., & Awotwi, J. (2013). Enabling development through governance and mobile technology. Government Information Quarterly, 30, S32–S45. https://doi.org/10.1016/j.giq.2012.10.004
Özdemir, E., & Türkoğlu, İ. (2022). Yazılım Güvenlik Açıklarının Evrişimsel Sinir Ağları (CNN) ile Sınıflandırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 34(2), 517–529. https://doi.org/10.35234/fumbd.1076870
Pang, B., & Lee, L. (2008). Opinion Mining and Sentiment Analysis. Foundations and Trends® in Information Retrieval, 2(1–2), 1–135. https://doi.org/10.1561/1500000011
Ramos, J. E. (2003). Using TF-IDF to Determine Word Relevance in Document Queries. Proceedings of the First Instructional Conference on Machine Learning, 133–142. https://api.semanticscholar.org/CorpusID:14638345
Rana, N. P., Dwivedi, Y. K., & Williams, M. D. (2013). Analysing challenges, barriers and CSF of egov adoption. Transforming Government: People, Process and Policy, 7(2), 177–198. https://doi.org/10.1108/17506161311325350
Ravi, K., & Ravi, V. (2015). A survey on opinion mining and sentiment analysis: Tasks, approaches and applications. Knowledge-Based Systems, 89, 14–46. https://doi.org/10.1016/j.knosys.2015.06.015
Schonlau, M., Guenther, N., & Sucholutsky, I. (2017). Text Mining with n-gram Variables. The Stata Journal: Promoting Communications on Statistics and Stata, 17(4), 866–881. https://doi.org/10.1177/1536867x1801700406
Shareef, M. A., Kumar, V., Kumar, U., & Dwivedi, Y. K. (2011). e-Government Adoption Model (GAM): Differing service maturity levels. Government Information Quarterly, 28(1), 17–35. https://doi.org/10.1016/j.giq.2010.05.006
Sial, A. H., Rashdi, S. Y. S., & Khan, A. H. (2021). International Journal of Advanced Trends in Computer Science and Engineering, 10(1), 277–281. https://doi.org/10.30534/ijatcse/2021/391012021
Sri, V. R., Niharika, C., Maneesh, K., & Ismail, D. M. (2019). Sentiment Analysis of Patients' Opinions in Healthcare using Lexicon-based Method. International Journal of Engineering and Advanced Technology, 9(1), 6977–6981. https://doi.org/10.35940/ijeat.a2141.109119
Sucu, İ. (2022). Kurumsal Sosyal Sorumluluk Kampanyalarının Marka İmajına Etkisi: Turkcell Markası Örneği. Yalova Sosyal Bilimler Dergisi, 12(2), 140–147.
Taboada, M., Brooke, J., Tofiloski, M., Voll, K., & Stede, M. (2011). Lexicon-Based Methods for Sentiment Analysis. Computational Linguistics, 37(2), 267–307. https://doi.org/10.1162/coli_a_00049
Thelwall, M., Buckley, K., & Paltoglou, G. (2012). Sentiment strength detection for the social web. Journal of the American Society for Information Science and Technology, 63(1), 163–173. https://doi.org/10.1002/asi.21662
Tosun, A. (2024). Kamu Yönetiminde Hizmet Sunumunda Bir Paradigma Değişimi: E-Devlet. International Journal of Social Sciences, 8(33), 137–154. https://doi.org/10.52096/usbd8.33.10
Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology1. MIS Quarterly, 36(1), 157–178. https://doi.org/10.2307/41410412
Viegas, F., Wattenberg, M., & Feinberg, J. (2009). Participatory Visualization with Wordle. IEEE Transactions on Visualization and Computer Graphics, 15(6), 1137–1144. https://doi.org/10.1109/tvcg.2009.171
Vrabie, C. (2023). E-Government 3.0: An AI Model to Use for Enhanced Local Democracies. Sustainability, 15(12), 9572. https://doi.org/10.3390/su15129572
Waskom, M. (2021). seaborn: statistical data visualization. Journal of Open Source Software, 6(60), 3021. https://doi.org/10.21105/joss.03021
Yıldırım, S., & Yıldız, T. (2018). Türkçe için karşılaştırmalı metin sınıflandırma analizi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(5), 879–886.
Yılmaz, H., & Yumuşak, S. (2021). Açık Kaynak Doğal Dil İşleme Kütüphaneleri. İstanbul Sabahattin Zaim Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 3(1), 81–85. https://doi.org/10.47769/izufbed.879217
Yürük, E., & Öztaş, N. (2017). E-Devlet Ana Kapıları Üzerine İnceleme: Türkiye ve Seçilmiş Ülkeler. Süleyman Demirel Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi, 22(Kayfor 15 Özel Sayısı), 2133–2157.
alphanumeric journal has been publishing as "International Peer-Reviewed
Journal" every six months since 2013. alphanumeric serves as a vehicle for researchers and
practitioners in the field of quantitative methods, and is enabling a process of sharing in all
fields related to the operations research, statistics, econometrics and management informations
systems in order to enhance the quality on a globe scale.