• ISSN: 2148-2225 (online)

alphanumeric journal

alphanumeric journal

The Journal of Operations Research, Statistics, Econometrics and Management Information Systems

Evaluation of the effect of mobile applications on corporate reputation with artificial intelligence through user comments: E-Government case


Mehmet Kayakuş, Ph.D.

Dilşad Erdoğan


Abstract

This study examines the impact of e-government mobile applications on corporate reputation through user comments. Today, when digitalisation is accelerating, public services offered through mobile applications directly affect user experiences and shape the reputation of institutions. 2000 user comments from the Google Play Store were analysed using artificial intelligence methods, text mining, and sentiment analysis techniques. It was determined that 45% of the comments were positive, 15% were negative, and 40% were neutral. Positive comments indicate that the application has a positive user perception in general. However, some users were dissatisfied due to technical problems. As a result of text mining, the most frequently mentioned words and phrases of users were analysed, and feedback was categorised through sentiment analysis. In this process, WordNet was used to extract word frequencies, TextBlob was applied to classify user comments into positive, negative, and neutral categories, and Seaborn visualisations such as word clouds were employed to illustrate the findings. The findings reveal the importance of mobile applications for the sustainability of digital public services. It is emphasised that the technical performance of the application should be improved to increase user satisfaction and strengthen institutional reputation.

Keywords: Artificial intelligence, Corporate reputation, E-government, Mobile application

Jel Classification: C80, C88, H10


Suggested citation

Kayakuş, M. & Erdoğan, D. (). Evaluation of the effect of mobile applications on corporate reputation with artificial intelligence through user comments: E-Government case. Alphanumeric Journal, 13(2), 37-54. https://doi.org/10.17093/alphanumeric.1713959

bibtex

References

  • Aggarwal, C. C. (2012). Mining Text Streams. In Mining Text Data (pp. 297–321). Springer US. https://doi.org/10.1007/978-1-4614-3223-4_9
  • Ahuja, S., & Dubey, G. (2017). Clustering and sentiment analysis on Twitter data. 2017 2nd International Conference on Telecommunication and Networks (TEL-NET), 1–5. https://doi.org/10.1109/tel-net.2017.8343568
  • Al Ali, F., Stephens, M., & Pereira, V. (2023). Government e-Services and Reputation. In Doing Business in the Middle East (pp. 235–252). Routledge. https://doi.org/10.4324/9781003005766-19
  • Al-Besher, A., & Kumar, K. (2022). Use of artificial intelligence to enhance e-government services. Measurement: Sensors, 24, 100484. https://doi.org/10.1016/j.measen.2022.100484
  • Alkan, Ö., & Ünver, Ş. (2020). Türkiye'de E-Devlet Hizmetlerinin Kullanımını Etkileyen Faktörlerin Analizi. Atatürk Üniversitesi İktisadi Ve İdari Bilimler Dergisi. https://doi.org/10.16951/atauniiibd.757571
  • Ateş, H., & Yavuz, Ö. (2019). Elektronik Devletten Mobil Devlete Geçiş: Fırsatlar, Tehditler ve Uygulama Örnekleri. Bilgi Ekonomisi Ve Yönetimi Dergisi, 14(2), 155–177.
  • Bertot, J. C., Jaeger, P. T., & Grimes, J. M. (2010). Using ICTs to create a culture of transparency: E-government and social media as openness and anti-corruption tools for societies. Government Information Quarterly, 27(3), 264–271. https://doi.org/10.1016/j.giq.2010.03.001
  • Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation. Journal of Machine Learning Research, 3, 993–1022.
  • Çankaya Kurnaz, S. (2024). Türkiye'nin e-devlet olgunluk düzeyi: BM e-devlet gelişmişlik endeksi üzerinden bir değerlendirme. Yönetim Bilimleri Dergisi. https://doi.org/10.35408/comuybd.1513698
  • Carter, L., & Bélanger, F. (2005). The utilization of e-government services: citizen trust, innovation and acceptance factors⁎. Information Systems Journal, 15(1), 5–25. https://doi.org/10.1111/j.1365-2575.2005.00183.x
  • Castilla, R., Pacheco, A., & Franco, J. (2023). Digital government: Mobile applications and their impact on access to public information. Softwarex, 22, 101382. https://doi.org/10.1016/j.softx.2023.101382
  • Çelen, F. K., Çelik, A., & Seferoğlu, S. S. (2011). Türkiye'deki e-Devlet Uygulamalarının Değerlendirilmesi. XIII. Akademik Bilişim Konferansı Bildirileri, 59–67.
  • Chun, R. (2005). Corporate reputation: Meaning and measurement. International Journal of Management Reviews, 7(2), 91–109. https://doi.org/10.1111/j.1468-2370.2005.00109.x
  • Dede, A. (2024). Dijital vatandaşlığın dokuz boyutu ve e-devlet uygulamaları. EKEV Akademi Dergisi, 97, 15–27. https://doi.org/10.17753/sosekev.1365162
  • Dijkmans, C., Kerkhof, P., & Beukeboom, C. J. (2015). A stage to engage: Social media use and corporate reputation. Tourism Management, 47, 58–67. https://doi.org/10.1016/j.tourman.2014.09.005
  • Dowling, G. (2006). Reputation risk: it is the board's ultimate responsibility. Journal of Business Strategy, 27(2), 59–68. https://doi.org/10.1108/02756660610650055
  • Feldman, R., & Sanger, J. (2006). The Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data. Cambridge University Press. https://doi.org/10.1017/cbo9780511546914
  • Fombrun, C. J. (1996). Reputation: Realizing Value from the Corporate Image. Harvard Business School Press.
  • Fombrun, C. J., & Riel, C. B. M. v. (2004). Fame & fortune: how successful companies build winning reputations. Pearson Education.
  • Gebauer, J., Tang, Y., & Baimai, C. (2007). User requirements of mobile technology: results from a content analysis of user reviews. Information Systems and E-Business Management, 6(4), 361–384. https://doi.org/10.1007/s10257-007-0074-9
  • GooglePlay. (2024). E-Devlet Kapısı. https://play.google.com/store/apps/details?id=tr.gov.turkiye.edevlet.kapisi&hl=tr
  • Gupta, K. P., Singh, S., & Bhaskar, P. (2016). Citizen adoption of e-government: a literature review and conceptual framework. Electronic Government, An International Journal, 12(2), 160. https://doi.org/10.1504/eg.2016.076134
  • Gupta, S., & Mathur, N. (2024). User-centred exploration of m-governance adoption: identifying and analysing determinants. 18. https://doi.org/10.1108/TG-01-2024-0027
  • Hakimi, M., Salem, M. H., Miskinyar, M. S., & Sazish, B. (2023). Integrating Artificial Intelligence into E-Government: Navigating Challenges, Opportunities, and Policy Implications. International Journal of Academic and Practical Research, 2(2), 11–21.
  • Heeks, R. (2006). Implementing and Managing eGovernment: An International Text. SAGE Publications Ltd. https://doi.org/10.4135/9781446220191
  • Heimerl, F., Lohmann, S., Lange, S., & Ertl, T. (2014). Word Cloud Explorer: Text Analytics Based on Word Clouds. 2014 47th Hawaii International Conference on System Sciences, 1833–1842. https://doi.org/10.1109/hicss.2014.231
  • Kavut, S. (2024). Toplumların Dijital Dönüşüm Aracı Olarak Yapay Zekâ Çalışmaları: Türkiye'nin ve Türk Devletleri Teşkilatının Yapay Zekâ Kullanımı Üzerine Bir Analiz. Erciyes İletişim Dergisi, 11(1), 325–344. https://doi.org/10.17680/erciyesiletisim.1346576
  • Kayakuş, M., & Yiğit Açıkgöz, F. (2023). Twitter'da Makine Öğrenmesi Yöntemleriyle Sahte Haber Tespiti. Abant Sosyal Bilimler Dergisi, 23(2), 1017–1027. https://doi.org/10.11616/asbi.1266179
  • Kim, J., & Lennon, S. J. (2013). Effects of reputation and website quality on online consumers' emotion, perceived risk and purchase intention: Based on the stimulus-organism-response model. Journal of Research in Interactive Marketing, 7(1), 33–56. https://doi.org/10.1108/17505931311316734
  • Liu, B. (2012). Sentiment Analysis and Opinion Mining (1st ed. 2012). Springer International Publishing.
  • Loria, S., Keen, P., Honnibal, M., Yankovsky, R., Karesh, D., & Dempsey, E. (2014, ). Textblob: Simplified Text Processing. https://textblob.readthedocs.io/en/dev/
  • Melin, U., Axelsson, K., & Söderström, F. (2016). Managing the development of e-ID in a public e-service context: Challenges and path dependencies from a life-cycle perspective. Transforming Government: People, Process and Policy, 10(1), 72–98. https://doi.org/10.1108/tg-11-2013-0046
  • Miller, G. A. (1995). WordNet: a lexical database for English. Communications of the ACM, 38(11), 39–41. https://doi.org/10.1145/219717.219748
  • Moon, M. J. (2002). The Evolution of E-Government among Municipalities: Rhetoric or Reality?. Public Administration Review, 62(4), 424–433. https://doi.org/10.1111/0033-3352.00196
  • Naghizade, K., Karakethüdaoğlu, M., & Akbiyik, A. (2018, ). Mobil Uygulama Geliştirmede Geri Bildirimin Önemi: Türkiye E-Devlet Örneği. International Congress on Economics and Business 2018.
  • Nam, W., Lee, J., & Jang, B.-C. (2022). Text summarization of dialogue based on BERT. Journal of the Korea Society of Computer and Information, 27(8), 41–47. https://doi.org/10.9708/jksci.2022.27.08.041
  • Naralan, A. (2010). E-Devlet'e Etki Eden Faktörler. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 12(2), 457–468.
  • Ojo, A., Janowski, T., & Awotwi, J. (2013). Enabling development through governance and mobile technology. Government Information Quarterly, 30, S32–S45. https://doi.org/10.1016/j.giq.2012.10.004
  • Özdemir, E., & Türkoğlu, İ. (2022). Yazılım Güvenlik Açıklarının Evrişimsel Sinir Ağları (CNN) ile Sınıflandırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 34(2), 517–529. https://doi.org/10.35234/fumbd.1076870
  • Pang, B., & Lee, L. (2008). Opinion Mining and Sentiment Analysis. Foundations and Trends® in Information Retrieval, 2(1–2), 1–135. https://doi.org/10.1561/1500000011
  • Ramos, J. E. (2003). Using TF-IDF to Determine Word Relevance in Document Queries. Proceedings of the First Instructional Conference on Machine Learning, 133–142. https://api.semanticscholar.org/CorpusID:14638345
  • Rana, N. P., Dwivedi, Y. K., & Williams, M. D. (2013). Analysing challenges, barriers and CSF of egov adoption. Transforming Government: People, Process and Policy, 7(2), 177–198. https://doi.org/10.1108/17506161311325350
  • Ravi, K., & Ravi, V. (2015). A survey on opinion mining and sentiment analysis: Tasks, approaches and applications. Knowledge-Based Systems, 89, 14–46. https://doi.org/10.1016/j.knosys.2015.06.015
  • Schonlau, M., Guenther, N., & Sucholutsky, I. (2017). Text Mining with n-gram Variables. The Stata Journal: Promoting Communications on Statistics and Stata, 17(4), 866–881. https://doi.org/10.1177/1536867x1801700406
  • Shareef, M. A., Kumar, V., Kumar, U., & Dwivedi, Y. K. (2011). e-Government Adoption Model (GAM): Differing service maturity levels. Government Information Quarterly, 28(1), 17–35. https://doi.org/10.1016/j.giq.2010.05.006
  • Sial, A. H., Rashdi, S. Y. S., & Khan, A. H. (2021). International Journal of Advanced Trends in Computer Science and Engineering, 10(1), 277–281. https://doi.org/10.30534/ijatcse/2021/391012021
  • Sri, V. R., Niharika, C., Maneesh, K., & Ismail, D. M. (2019). Sentiment Analysis of Patients' Opinions in Healthcare using Lexicon-based Method. International Journal of Engineering and Advanced Technology, 9(1), 6977–6981. https://doi.org/10.35940/ijeat.a2141.109119
  • Sucu, İ. (2022). Kurumsal Sosyal Sorumluluk Kampanyalarının Marka İmajına Etkisi: Turkcell Markası Örneği. Yalova Sosyal Bilimler Dergisi, 12(2), 140–147.
  • Taboada, M., Brooke, J., Tofiloski, M., Voll, K., & Stede, M. (2011). Lexicon-Based Methods for Sentiment Analysis. Computational Linguistics, 37(2), 267–307. https://doi.org/10.1162/coli_a_00049
  • Thelwall, M., Buckley, K., & Paltoglou, G. (2012). Sentiment strength detection for the social web. Journal of the American Society for Information Science and Technology, 63(1), 163–173. https://doi.org/10.1002/asi.21662
  • Tosun, A. (2024). Kamu Yönetiminde Hizmet Sunumunda Bir Paradigma Değişimi: E-Devlet. International Journal of Social Sciences, 8(33), 137–154. https://doi.org/10.52096/usbd8.33.10
  • Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology1. MIS Quarterly, 36(1), 157–178. https://doi.org/10.2307/41410412
  • Viegas, F., Wattenberg, M., & Feinberg, J. (2009). Participatory Visualization with Wordle. IEEE Transactions on Visualization and Computer Graphics, 15(6), 1137–1144. https://doi.org/10.1109/tvcg.2009.171
  • Vrabie, C. (2023). E-Government 3.0: An AI Model to Use for Enhanced Local Democracies. Sustainability, 15(12), 9572. https://doi.org/10.3390/su15129572
  • Waskom, M. (2021). seaborn: statistical data visualization. Journal of Open Source Software, 6(60), 3021. https://doi.org/10.21105/joss.03021
  • Yıldırım, S., & Yıldız, T. (2018). Türkçe için karşılaştırmalı metin sınıflandırma analizi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(5), 879–886.
  • Yılmaz, H., & Yumuşak, S. (2021). Açık Kaynak Doğal Dil İşleme Kütüphaneleri. İstanbul Sabahattin Zaim Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 3(1), 81–85. https://doi.org/10.47769/izufbed.879217
  • Yürük, E., & Öztaş, N. (2017). E-Devlet Ana Kapıları Üzerine İnceleme: Türkiye ve Seçilmiş Ülkeler. Süleyman Demirel Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi, 22(Kayfor 15 Özel Sayısı), 2133–2157.

Volume 13, Issue 2, 2025

2025.13.02.MIS.01

alphanumeric journal

Volume 13, Issue 2, 2025

Pages 37-54

Received: June 4, 2025

Accepted: Nov. 5, 2025

Published: Dec. 31, 2025

Full Text [735.7 KB]

2025 Kayakuş, M., Erdoğan, D.

This is an Open Access article, licensed under Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons Attribution licence

scan QR code to access this article from your mobile device


Contact Us

Faculty of Transportation and Logistics, Istanbul University
Beyazit Campus 34452 Fatih/Istanbul/Türkiye

Bahadır Fatih Yıldırım, Ph.D.
editor@alphanumericjournal.com
+ 90 (212) 440 00 00 - 13219

alphanumeric journal

alphanumeric journal has been publishing as "International Peer-Reviewed Journal" every six months since 2013. alphanumeric serves as a vehicle for researchers and practitioners in the field of quantitative methods, and is enabling a process of sharing in all fields related to the operations research, statistics, econometrics and management informations systems in order to enhance the quality on a globe scale.