Classification of Autism Spectrum Disorder for Adolescents Using Artificial Neural Networks
Sümeyye Çelik
Author Profile
Sümeyye Çelik
Res. Assist., Department of Management Information Systems, Faculty of Business Administration Adana Alparslan Türkeş Science and Technology University, Adana, Turkiye, sumeyyecelik@atu.edu.tr
Assist. Prof., Department of Software Engineering, Computer Sciences, Faculty of Technology Mehmet Akif Ersoy University, Burdur, Turkiye, melikesiseci@mehmetakif.edu.tr
Assist. Prof., Department of Software Engineering, Computer Sciences, Faculty of Technology Mehmet Akif Ersoy University, Burdur, Turkiye, ihsanpence@mehmetakif.edu.tr
Artificial neural networks, is one of the most preferred artificial intelligence techniques in the modeling of complex systems today and the models are based on the working structure of the nerve cells in the human brain. Autism spectrum disorder is a complex neuro-developmental disorder that is congenital or occurs at an early age. Since early diagnosis has a very important role in the treatment, there are many studies on this subject. In this study, a subset of current autism spectrum disorder data obtained from UCI machine learning repository for adolescents has used. In order to test the success of the model, after the necessary preprocesses have performed on the data set, the data has separated into training and test set and classified with the trained network. As a result, 100% accuracy rate in the training set and 96.77% accuracy rate in the test set are achieved. Sensitivity, Specificity and F-measure values obtained in the test set are 0.94, 1.0 and 0.97, respectively and reveals the model success.
Akyol, K., Karaci, A. (2018). A Study On Autistic Spectrum Disorder For Children Based On Feature Selection And Fuzzy Rule. In: International Congress on Engineering and Life Science, pp. 804–807
Ayaz, F., Ari, A., & Hanbay, D. (2017, September). Leaf recognition based on artificial neural network. In 2017 International Artificial Intelligence and Data Processing Symposium (IDAP) (pp. 1-5). IEEE.
Calp, M. H. (2019). İşletmeler için personel yemek talep miktarının yapay sinir ağları kullanılarak tahmin edilmesi. Politeknik dergisi, 22(3), 675-686.
Canayaz, M., & Demir, M. (2017, September). Feature selection with the whale optimization algorithm and artificial neural network. In 2017 International Artificial Intelligence and Data Processing Symposium (IDAP) (pp. 1-5). IEEE.
Çalışkan, E., & Sevim, Y. (2019). A comparatıve study of artıfıcıal neural networks and multıple regressıon analysıs for modelıng skıddıng tıme. Applıed Ecology And Envıronmental Research, 17(2), 1741-1756.
Çelik, S., Bozkurt, Ö. Ç., & Çeşmeli, M. Ş. (2018). İnsan omurgasi veri setinin sinir-bulanik siniflayici ile öznitelik tespiti ve siniflandirilmasi. Yönetim Bilişim Sistemleri Dergisi, 4(1), 39-52.
Çelik, S., (2020). Determination and classification of ımportance of attributes used in diagnosing pregnant women's birth method. Alphanumeric Journal, 8(2), 261-274.
Çetin, O., & Temurtaş, F. (2019). Görsel uyaranlara ilişkin manyetoensefalografi sinyallerinin genelleştirilmiş regresyon sinir ağı ile sınıflandırılması. Dicle Tıp Dergisi, 46(1), 19-25.
Deb, C., Lee, S. E., & Santamouris, M. (2018).Using artificial neural networks to assess hvac related energy saving in retrofitted office buildings. Solar Energy, 163, 32-44.
De Campos Souza, P. V., & Guimaraes, A. J. (2018, June). Using fuzzy neural networks for improving the prediction of children with autism through mobile devices. In 2018 IEEE Symposium on Computers and Communications (ISCC) (pp. 01086-01089). IEEE.
Ekinci, Y., Temur, G. T., Çelebi, D., & Bayraktar, D. (2010). Ekonomik kriz döneminde firma başarısı tahmini: yapay sinir ağları tabanlı bir yaklaşım. Journal of Industrial Engineering, 21(1), 17-29.
El-Bouri, A., Balakrishnan, S., Popplewell, N. (2000). Sequencing jobs on a single machine: a neural network approach. European Journal of Operational Research, 126, 474–490.
Kalogirou, S. A. (1999). Applications of artificial neural networks in energy systems. Energy Conversion and Management, 40(10), 1073-1087.
Karahan, M. (2015). Turizm talebinin yapay sinir ağaları yöntemiyle tahmin edilmesi. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 20(2), 195-209.
Kaynar, O., Taştan, S., & Demirkoparan, F. (2011). Yapay sinir ağlari ile doğalgaz tüketim tahmini. Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, 25(özel sayı), 463- 474.
Kaynar, O., & Taştan, S. (2009). Zaman serisi analizinde mlp yapay sinir ağları ve arıma modelinin karşılaştırılması. Erciyes Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, (33), 161-172.
Koçak, C., & Karakurt, H. B. (2019). Yapay sinir ağları ile kablosuz yerel alan ağlarında veri trafiği optimizasyonu. Politeknik Dergisi, 22(3), 737-747.
Koç, M. L., Balas, C. E., & Arslan, A. (2004). Taş dolgu dalgakıranların yapay sinir ağları ile ön tasarımı. Teknik Dergi, 15(74), 3351-3375.
Özkan, C., Doğan, S., Kantar, T., Akşahin, M. F., & Erdamar, A. (2016, May). Detection of epilepsy disease from EEG signals with artificial neural networks. In 2016 24th Signal Processing and Communication Application Conference (SIU) (pp. 693-696). IEEE.
Özmen, Ö., Ahmad, K. H. D. R., & Engin, A. V. C. I. (2018). Sınıflandırıcıların kalp hastalığı verileri üzerine performans karşılaştırması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 30(3), 153-159.
Uygunoğlu, T., & Yurtcu, Ş. (2006). Yapay zeka tekniklerinin inşaat mühendisliği problemlerinde kullanımı. Yapı Teknolojileri Elektronik Dergisi, 2(1), 61-70.
Thabtah, F. (2017, May). Autism spectrum disorder screening: machine learning adaptation and DSM-5 fulfillment. In Proceedings of the 1st International Conference on Medical and Health Informatics 2017 (pp. 1-6). ACM.
Thabtah, F. (2017). ASDTests. A mobile app for ASD screening.
Thabtah, F. (2018). Machine learning in autistic spectrum disorder behavioral research: A review and ways forward. Informatics for Health and Social Care, 1-20.
Thabtah, F., Kamalov, F., & Rajab, K. (2018). A new computational intelligence approach to detect autistic features for autism screening. International journal of medical informatics, 117, 112-124.
Yıldırım, H. (2019). Property value assessment usıng artıfıcıal neural networks, hedonıc regressıon and nearest neıghbors regressıon methods. Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 7(2), 387-404.
Yıldız, E., & Özdemir, E. (2019). Esnek Geri Yayılımlı ve Geliştirilmiş Geri yayılımlı sinir ağları performanslarının elektrikli ark ocaklarında karşılaştırılması. International Journal of Multidisciplinary Studies and Innovative Technologies, 3(1), 72-75.
Yoldaş, Ö., Tez, M., & Karaca, T. (2012). Artificial neural networks in the diagnosis of acute appendicitis. The American Journal of Emergency Medicine, 30(7), 1245-1247.
alphanumeric journal has been publishing as "International Peer-Reviewed
Journal" every six months since 2013. alphanumeric serves as a vehicle for researchers and
practitioners in the field of quantitative methods, and is enabling a process of sharing in all
fields related to the operations research, statistics, econometrics and management informations
systems in order to enhance the quality on a globe scale.