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Abstract

This study addresses the problem of assigning correlated Stock Keeping Units
(SKUs) to storage locations under uncertain SKU correlation conditions. The
objective is to allocate SKUs within the forward picking area of a warehouse to
minimize the total picking distance. The correlation of SKUs in demand patterns
is considered while assigning the SKUs to storage locations. The correlation
among the SKUs is identified based on the joint distribution concept. We
formulate the problem as a Quadratic Assignment Problem (QAP), which becomes
computationally intractable at large scales due to its complexity. The QAP model
is linearized to mitigate this challenge, and a robust counterpart is developed to
handle uncertainty effectively. The robust model was evaluated through various
small-scale scenarios. While it yielded optimal results within an efficient time
frame for small-scale problems, the solution time increased significantly as the
problem size expanded.
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1. Introduction

Warehouse management takes a critical role in the supply chain, particularly with the widespread
adoption of e-commerce and the globalization of production. Many manufacturers and e-commerce
companies utilize warehouses to distribute goods efficiently and cost-effectively. Given the vast
number of products handled in a warehouse, the costs associated with receiving, storing, and
shipping can be substantial. Warehouse Management Systems (WMS) are designed to optimize
operations by reducing the highest cost components. According to Bartholdi et al. (2008), approx-
imately 65% of warehouse costs are attributed to the picking process. Similarly, Tompkins et al.
(2010) reported that order picking accounts for 55% of total warehouse operating expenses, while the
remaining costs are associated with shipping, storage, and receiving. Since travel time or distance in
the picking process is a key performance indicator, minimizing it is a primary objective. Consequently,
focusing on optimizing the picking process can mitigate the overall operational costs of warehouse
management.

The placement and retrieval of related products have been addressed to some extent in the
literature. The process of storing and retrieving products based on customer orders can be highly
time-consuming. When products are placed randomly on warehouse shelves, retrieval times increase
significantly. Often, when customers place orders, there is a high likelihood that they will simultane-
ously order related products. Consequently, arranging related products near one another within the
warehouse can substantially reduce retrieval times. For instance, a customer ordering a toothbrush
is likely to also order toothpaste. If two related products are stored in close proximity within the
warehouse, the time it takes for a picker to retrieve these products can be minimized. Randomly
placed products increase the time it takes to pick products from the warehouse, thus making
warehouse management operations inefficient.

This study examines the slotting of correlated SKUs, where certain SKUs are typically ordered
together. Consequently, when assigning SKUs to available storage locations, it is essential to account
for their affinity. Placing correlated SKUs in close proximity to one another can reduce the picking
distance. In other words, by incorporating product affinity, the operational costs of the warehouse
can be significantly minimized. To this end, we consider various numbers of racks within the forward
picking area. It is assumed that the racks have an equal number of SKUs to be assigned, as illustrated
in Figure 1. The problem is modeled with a framework of the quadratic assignment problem, and it
becomes computationally intractable as the number of SKUs and racks increases. With an uncertain
demand condition, a robust modeling approach is proposed for assigning a specific number of SKUs
to storage locations, considering the uncertainty in incoming orders. The correlation data between
SKUs is determined based on the concept of joint distribution. The upper and lower bounds of the
nominal value are derived from the literature and calculated based on expected values to in robust
counterpart of model.

The rest of the paper is structured as follows: Section 2 presents a review of the literature on SKU
assignments and robust optimization problems. Section  3 presents the details of the quadratic,
linear, and robust modeling approaches, along with the methodology for calculating SKU correla-
tions. Section 4 provides information on the solution of the model and the analysis of the results.
Finally, Section 5 discusses the conclusions and directions for future work.
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Figure 1. An example of layout in forward picking area

2. Literature Review

The task of assigning SKUs to storage locations is commonly referred to as the slotting problem. The
studies, including slotting, have been searched in the journal databases. A significant number of
papers have investigated the slotting problem. Kim & Smith (2012) studied the assignment of SKUs
to slots in zone-based carton picking distribution systems, where the items to be picked had already
been determined. They proposed a simulated annealing heuristic approach to solve the slotting
problem due to the characteristic of being large-scale nature. Mantel et al. (2007) proposed a new
strategy to assign SKUS to storage locations in a warehouse. In their study, an assignment model has
been presented by considering the correlation between the products ordered together, instead of
the number of orders placed, called the Cupe per Order Index (COI). Xiao & Zheng (2012) designed
a system of order picking to minimize zone visits in storage areas by considering storing items with
demand dependencies. They proposed a mathematical model and two heuristic algorithms to assign
items in the storage area. Islam & Uddin (2023) conducted a detailed literature review about corre-
lated SKUS assignment problems. The study evaluated correlated slot assignment problems and
problem-solving approaches. (Ma et al., 2022) introduced a mixed integer programming model for
commodity storage assignment problems, aiming to assign products to appropriate locations while
taking customer demand patterns into account. The authors constructed a variable neighborhood
search and simulated annealing search-based framework to test small, medium, and large instances
to compare with the state-of-the-art methods. Zhou et al. (2014) investigated the impact of demand
correlation among SKUS on the picking process to minimize total picking time. The study proposed a
particle swarm algorithm with a cube-per-order index-based initial solution to solve the assignment
problem within a reasonable time.

The quadratic assignment problem (QAP) framework has been widely applied in various studies. For
instance, Elshafei (1977) employed QAP to optimize hospital layouts by analyzing existing layouts with
predefined locations and assigning an equal number of departments to these locations. In the con-
text of warehouse optimization, this study focuses on the assignment of stock-keeping units (SKUs)
to racks in the forward picking area. The SKU assignment problem is classified as a combinatorial
optimization problem, which is known for its computational complexity and difficulty in achieving
optimal solutions within a reasonable time frame. To address general QAP instances, Ahuja et al.
(2000) developed a greedy genetic algorithm. From the perspective of warehouse picking operations,
Hsu et al. (2005) proposed a genetic algorithm-based order batching approach to enhance efficiency
across different batch structures and warehouse layouts. Furthermore, Poulos et al. (2001) applied
a Pareto-optimal genetic algorithm to the warehouse replenishment problem, aiming to optimize
resource utilization, minimize costs, and improve customer service.

alphanumeric 13 (1), 1–12 3
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In recent years, the Robust Optimization (RO) approach has been extensively utilized in many studies
to model uncertainty in data. Bertsimas & Sim (2003) developed the robust counterpart of a linear
model, significantly reducing the solution time. Bertsimas & Sim (2004) also formulated the robust
counterpart of a MILP model, facilitating more efficient solutions for optimization problems with
integer variables. The robust optimization method has been utilized for various problems in many
fields. Remodeling of problems with uncertainty parameters allows the problem to be solved in a
shorter time. Dundar et al. (2019) and Dundar et al. (2022) utilized the RO modeling approach to
address the uncertainty in renewable energy planning studies. Costello et al. (2021) and Dundar et al.
(2017) developed the robust counterpart of linear models that aimed to solve local food problems.
The Robust Optimization (RO) approach enables decision-makers to systematically manage risk sce-
narios by incorporating uncertainty into the decision-making process, thereby enhancing solution
reliability and robustness. In this study, the uncertainty in the correlation between SKUs is modeled
using the RO approach. To the best of our knowledge, this study distinguishes itself from the existing
literature by employing the joint distribution approach to model the correlation between SKUs as
an uncertain parameter and addressing the problem using the robust optimization approach.

3. Problem Formulations

A Quadratic Assignment Problem(QAP) approach is proposed to optimally assign the correlated SKUs
in the forward picking area as carton unit-loads to the storage location. The mathematical formu-
lation of the problem is presented below. The objective function (Eq. 1) aims to minimize the total
distance among the correlated SKUs, thereby reducing the picker’s travel distance when fulfilling
orders. Let 𝜃 denote the set of correlated SKUs, and 𝔏 is the set of storage locations. Let 𝑐𝑖𝑗 > 0 be the
correlation of product 𝑖 and 𝑗 ordered together. Moreover, let 𝑑𝑘𝑟 > 0 be distance between storage
location 𝑘 and 𝑟.

𝜓 = min∑
𝑖,𝑗∈𝜃

∑
𝑘,𝑟∈ℒ

𝑐𝑖𝑗𝑑𝑘𝑟𝜒𝑖𝑘𝜒𝑗𝑟 (1)

The constraint (Eq.  2) restricts that each product 𝑖 can be assigned only one storage location 𝑘.
Similarly, the constraint (Eq. 3) shows that each location 𝑘 can be assigned to only one product 𝑖.

∑
𝑘∈ℒ

𝜒𝑖𝑘 = 1,∀𝑖 ∈ 𝜃 (2)

∑
𝑖∈𝜃
𝜒𝑖𝑘 = 1,∀𝑘 ∈ ℒ (3)

The following assumptions are considered in the development of the mathematical model: (1) each
storage location is assigned to a single SKU, (2) the storage system utilizes double-deep racks, and
(3) the distance between two storage locations is assumed to be equal, measured from the center
of one storage location to the center of another.

3.1. Linearization of QAP (LQAP) model

The objective function of the QAP model includes nonlinear terms. Linearizing these terms facilitates
the formulation of a robust counterpart of the model and ensures its solvability within a reasonable
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time frame. The linearized version of the QAP(LQAP) model is presented below. A new variable 𝛾𝑖𝑗𝑘𝑙
is introduced, which enforces the relationship between 𝛾𝑖𝑗𝑘𝑙 = 𝜒𝑖𝑘 ⋅ 𝜒𝑗𝑙

min ∑
{(𝑖𝑗)∈𝜃 | 𝑖<𝑗}

∑
𝑘,𝑟∈ℒ

|𝑐𝑖𝑗|𝑑𝑘𝑟𝛾𝑖𝑗𝑘𝑟,

s.t. ∑
𝑘∈ℒ

𝜒𝑖𝑘 = 1,∀𝑖 ∈ 𝜃,

∑
𝑖∈𝜃
𝜒𝑖𝑘 = 1,∀𝑘 ∈ ℒ,

𝛾𝑖𝑗𝑘𝑟 ≤ 𝜒𝑖𝑘, ∀(𝑖, 𝑗) ∈ 𝜃|𝑖 < 𝑗, ∀(𝑘, 𝑟) ∈ ℒ

𝛾𝑖𝑗𝑘𝑟 ≤ 𝜒𝑗𝑟, ∀(𝑖, 𝑗) ∈ 𝜃|𝑖 < 𝑗, ∀(𝑘, 𝑟) ∈ ℒ,

𝜒𝑖𝑘 + 𝜒𝑗𝑟 − 1 ≤ 𝛾𝑖𝑗𝑘𝑟, ∀(𝑖, 𝑗) ∈ 𝜃|𝑖 < 𝑗, ∀(𝑘, 𝑟) ∈ ℒ

𝜒𝑖𝑘 ∈ {0, 1}, 𝛾𝑖𝑗𝑘𝑟 ∈ {0, 1}, ∀𝑖, 𝑗, 𝑘, 𝑟

(4)

3.2. Robust counterpart of LQAP model

The LQAP model, as previously described, represents a combinatorial optimization problem. Bert-
simas & Sim (2003) proposed a robust counterpart for the objective function incorporating a budget
constraint Γ0. The uncertain product frequency parameter, 𝑐𝑖𝑗, 𝑖, 𝑗 ∈ 𝜃 assumed to lie within the
interval [𝑐𝑖𝑗, 𝑐𝑖𝑗 + 𝛿𝑖𝑗]. The aim is to determine a feasible solution 𝛾𝑖𝑗𝑘𝑟 that minimizes the maximum
deviations in frequency parameters while ensuring that at most Γ0 of the parameters, 𝑐𝑖𝑗 are allowed
to deviate.

∑
{(𝑖,𝑗)∈𝜃|𝑖<𝑗}

∑
(𝑘,𝑟)∈ℒ|𝑘≠𝑟

𝑐𝑖𝑗𝑑𝑘𝑟𝛾𝑖𝑗𝑘𝑟 + 𝑧0Γ0 + ∑
(𝑖,𝑗)∈𝜃

�̃�𝑖𝑗 (5)

The final two terms in the objective function, which ensure robustness, are based on the
Robust Optimization (RO) framework introduced by Bertsimas & Sim (2003) to address input data
uncertainty.In this framework, the objective function coefficients subject to uncertainty represent
the frequency of orders among stock-keeping units (SKUs). The uncertain frequency is denoted as
𝑐𝑖𝑗, here this parameter is assumed to be bounded and symmetrically distributed within the interval
[|(𝑐)𝑖𝑗 − 𝑐𝑖𝑗, |(𝑐)𝑖𝑗 + 𝑐𝑖𝑗]. Here, |(𝑐)𝑖𝑗 denotes the nominal frequency value, while 𝑐𝑖𝑗 represents the
maximum allowable deviation from this nominal value. Additionally, it is assumed that all uncertain
parameters fluctuate independently. Let 𝜃 = {(𝑖, 𝑗) | 𝑐𝑖𝑗 > 0}, denote the subset of products whose
frequency parameters may deviate from their nominal values. Bertsimas & Sim (2004) introduced the
robustness control parameter Γ0, which takes an integer value and allows users to adjust the level
of robustness in the objective function. When Γ0 = 0, all parameters remain fixed at their nominal
values, leading to a deterministic model without robustness. In the proposed model, when Γ0 = |𝜃|,
all parameters within the subset 𝜃 are permitted to vary from their nominal values. Under these
conditions, the optimal solutions are determined by considering the worst-case scenario, following
the approach outlined in Soyster (1973). For Γ0 values that fall between these two limits., the term
𝑧Γ0 +∑(𝑖,𝑗)∈𝜃 �̃�𝑖𝑗 in the objective function quantifies the additional cost incurred due to the Γ0
worst-case-impact values of the decision variables 𝛾𝑖𝑗𝑘𝑙. The constraints (Eq. 6 - Eq. 10) have been
reformulated and added to the linearized model to control the uncertainty of parameters via Γ0 in
the objective function at the desired level.

alphanumeric 13 (1), 1–12 5
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𝑧0 + �̃�𝑖𝑗 ≥ 𝛾𝑖𝑗�̃�𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝜃 (6)

−�̃�𝑖𝑗 ≤ 𝑤𝑖𝑗 ≤ �̃�𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝜃 (7)

�̃�𝑖𝑗 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝜃 (8)

�̃�𝑖𝑗 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝜃 (9)

𝑧0 ≥ 0 (10)

3.3. Demand correlation of SKUs frequency

Changes in SKU demand were analyzed using joint and marginal distributions to determine the
correlation of SKUs being ordered together. The correlation data was used as nominal data for the
frequency parameters. Additionally, to apply robust optimization, it is crucial to establish the upper
and lower bounds of the nominal parameters. The correlation matrix, which represents the frequency
of SKUs in the picking process, along with the upper and lower bounds, is determined by following
the steps below.

Step 1: Determining the joint distributions and marginal distributions of SKUs.

Let’s assume that SKUs are given then the marginal distribution of each SKUs is denoted with 𝑃(𝑆𝑖)
and is calculated in Eq. 11. In similar way, the marginal distribution of 𝑆1 = 𝑠1, 𝑆2 = 𝑠2,…., 𝑆𝑛 = 𝑠𝑛 𝑛
SKUs can be determined from joint probability distribution 𝑃{𝑠1,𝑠2,…,𝑠𝑛}(𝑆1, 𝑆2,…, 𝑆3).

𝑃(𝑆𝑖) = ∑
𝑠1,𝑠2,...,𝑠𝑛≠𝑠𝑖

𝑃(𝑆1 = 𝑠1, 𝑆2 = 𝑠2, ..., 𝑆𝑛 = 𝑠𝑛) (11)

Step 2: Estimating the covariance and correlation of SKUs

Based on the data from the joint probability density function the covariance of the SKUs is estimated
as given in Eq. 12

Cov(𝑆𝑖, 𝑆𝑗) = 𝔼[𝑆𝑖𝑆𝑗] − 𝔼[𝑆𝑖]𝔼[𝑆𝑗] (12)

In above equation 𝔼[𝑆𝑖] is the expected value of SKUs 𝑖 (𝑆𝑖) and calculated based on 𝔼[𝑆𝑖] = ∑𝑠 𝑠(𝑆 =
𝑠). 𝔼[𝑆𝑖𝑆𝑗] is the expected value of product of SKUs 𝑖 and SKUs 𝑗, which is provided in Eq. 13

𝔼[𝑆𝑖𝑆𝑗] = ∑
𝑠1,𝑠2,...,𝑠𝑛

𝑠1𝑠2𝑃(𝑆1 = 𝑠1, 𝑆2 = 𝑠2, ..., 𝑆𝑛 = 𝑠𝑛) (13)

The correlation between two SKU 𝑖 and SKU 𝑗 is is estimated as given in Eq. 14

𝜌(𝑆𝑖, 𝑆𝑗) =
Cov(𝑆𝑖𝑆𝑗)
𝜎𝑆𝑖𝜎𝑆𝑗

(14)

where the standard deviation of SKUs 𝑖 (𝜎𝑆𝑖) is √𝔼[𝑆2𝑖 ] − (𝔼[𝑆𝑖])
2

Step 3: Creating covariance matrix to generate nominal values of SKUs demand frequency.

alphanumeric 13 (1), 1–12 6
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As aforementioned the nominal value of the correlated skus obtained by estimating the correlation
value between SKUs. The correlation matrix for demand frequency is given below.

ℂ =

(
((
((
((

1
𝜌(𝑆2, 𝑆1)

⋮
𝜌(𝑆𝑛, 𝑆1)

𝜌(𝑆1, 𝑆2)
1
⋮

𝜌(𝑆𝑛, 𝑆2)

⋯
⋯
⋱
⋯

𝜌(𝑆1, 𝑆𝑛)
𝜌(𝑆2, 𝑆𝑛)

⋮
1 )

))
))
))

(15)

Step 4: Determining the lower and upper bounds of the coefficient of the correlation values with the
Fréchet-Hoeffding Bounds approach (Olvera Astivia et al., 2020).

The lower bound (𝜌min) for each 𝜌(𝑆𝑖, 𝑆𝑗) is determined by using theoretical bounds identified in
Eq. 16.

𝜌𝑚𝑖𝑛(𝑆𝑖, 𝑆𝑗) =
𝔼[min(𝑆𝑖, 𝑆𝑗)] − 𝔼[𝑆𝑖]𝔼[𝑆𝑗]

𝜎𝑆𝑖𝜎𝑆𝑗
(16)

where 𝔼[min(𝑆𝑖, 𝑆𝑗)] is s estimated based on the Eq. 17

𝔼[min(𝑆𝑖, 𝑆𝑗)] =∑
𝑠1

∑
𝑠2

min(𝑠1, 𝑠2)𝑃 (𝑆1 = 𝑠1, 𝑆2 = 𝑠2) (17)

The upper bound (𝜌max) for each 𝜌(𝑆𝑖, 𝑆𝑗) is provided by using theoretical bounds identified in Eq. 18.

𝜌max(𝑆𝑖, 𝑆𝑗) =
𝔼[max(𝑆𝑖, 𝑆𝑗)] − 𝔼[𝑆𝑖]𝔼[𝑆𝑗)]

𝜎𝑆𝑖𝜎𝑆𝑗
(18)

where 𝔼[max(𝑆𝑖, 𝑆𝑗)] is s estimated based on on following equations.

𝔼[max(𝑆𝑖, 𝑆𝑗)] =∑
𝑠1

∑
𝑠2

max(𝑠1, 𝑠2)𝑃 (𝑆1 = 𝑠1, 𝑆2 = 𝑠2) (19)

A numerical example of the estimation of demand correlation is illustrated in Table 1.

Table 1. An illustration for the probability of two correlated SKUs with marginal distribution values

𝑠2
𝑃𝑆1,𝑆2(𝑠1, 𝑠2) 𝑃𝑆2(𝑠2)0 1 2 3 4

0 0.15 0.04 0.03 0.02 0.02 0.26

1 0.02 0.09 0.07 0.05 0.06 0.29𝑠1
2 0.01 0.03 0.13 0.15 0.13 0.45

𝑃𝑆1(𝑠1) 0.18 0.16 0.23 0.22 0.21

In the illustrated example, within any given order from the total incoming orders, a maximum of 2
units of SKU 𝑆1 ∈ {0, 1, 2} can be ordered. Similarly, a maximum of 4 units of SKU 𝑆2 ∈ {0, 1, 2, 3, 4}
can be demanded. The table shows that, for instance, the probability of ordering 1 unit of 𝑆1, and 2
units of 𝑆2 together is 𝑃𝑆1,𝑆2(𝑠1, 𝑠2) = 0.07 and the probability of ordering 2 unit of 𝑆1, and 2 units of
𝑆2 is 𝑃𝑆1,𝑆2(2, 2) = 0.13. The table also provides the marginal distribution for each SKUs(𝑆) value. For
example, while 𝑃𝑆1(0) = 0.26, 𝑃𝑆1(2) takes a value of 0.45. Following the similar steps, the marginal

alphanumeric 13 (1), 1–12 7
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distributions of 𝑆2, 𝑃𝑆2 , have also been determined. For instance, while 𝑃𝑆2(0) = 0.18, 𝑃𝑆2(4) takes a
value of 0.21.

After determining the marginal distributions of the SKUs, the covariance between the two SKUs can
be calculated based on Eq. 12. To compute the covariance (Cov(𝑆1, 𝑆2)), the expected values of 𝔼[𝑆1]
and 𝔼[𝑆2] must be determined along with the 𝔼[𝑆1𝑆2]. Regarding Table 1, one can find 𝔼[𝑆1] = 1.19
and 𝔼[𝑆2] = 2.12. Accordingly, 𝔼[𝑆1𝑆2] is 3.14. Since the value of 𝜌(𝑆1, 𝑆2) depends on 𝜎𝑆1  and 𝜎𝑆2 ,
one can find the 𝜎𝑆1 = 0.821 and 𝜎𝑆2 = 1.388. The correlation between SKUS 1 and SKUS 2 can be
estimated as 𝜌(𝑆1, 𝑆2) = 0.549. Meaning that there is a moderate positive correlation between SKUS
1 and SKUS 2. Similarly, the pairwise correlation values, 𝑐𝑖𝑗, among all SKUs are calculated, and the
𝐶 matrix is constructed.

4. Computational Results

In this section, ROLQAP and the LQAP models for various scenarios are analyzed. The ROLQAP model
was tested on a computer equipped with a 13th Gen Intel® Core™ i7-13700H processor and 64 GB
of RAM, using Python 3.11 and Gurobi 12.0. As mentioned previously, for the computational test, it
is assumed that the number of SKUs to be assigned is equal to the number of storage locations. To
evaluate the results of the proposed models, 5, 10, and 12 SKUs were tested under the uncertainty
of the correlation parameters of the SKUs and the deterministic scenarios. The distance between
adjacent rack locations (𝑑𝑘𝑟) was assumed to be 2 meters. The correlation coefficient between SKUs
was generated, 𝑐𝑖𝑗 ∼ 𝒰{−1, 1}, which aligns with the uniform distribution for experimental studies.

Table 2. ROLQAP model results for 5 SKUs and storage location

Γ0 % of
deviation

Objective function
value

CPU time
(sec)

10 39.9 0.12

0 30 39.9 0.16

50 39.9 0.17

10 40.6 0.17

1 30 42.0 0.13

50 43.4 0.14

10 41.3 0.18

2 30 44.0 0.19

50 46.7 0.17

10 41.7 0.18

3 30 45.3 0.15

50 48.9 0.18

10 42.1 0.19

4 30 46.6 0.16

50 51.0 0.15

10 42.5 0.14

5 30 47.7 0.15

50 52.9 0.15
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As shown in Table 2, we ran the ROLQAP model for five SKUs and five storage locations. We analyzed
the model under 10%, 30%, and 50% deviation scenarios by adjusting the upper and lower bounds
of the nominal correlation value. If the deviation value is increased from %10 to %50, the objective
function value shows a significant increase. This is due to the increase in the worst-case value that
the nominal value can take. For example, in the Γ0 = 3 scenario, the objective function value is 41.7
for a 10% deviation, whereas it rises to 48.9 when the nominal value deviates by 50%. As previously
mentioned, we initialized the Γ0 value at zero and gradually increased it by one, representing the
number of SKU correlations that could deviate from their nominal values. As expected, the objective
function value increased as the Γ0 value grew. For instance, in the 10% deviation scenario, the
objective function value was 40.6 when Γ0 = 1, whereas it increased to 42.5 when Γ0 = 5. As shown in
Table 2, the average CPU time for five SKUs and five storage locations was calculated as 0.16 seconds.
This result indicates that the ROLQAP model can achieve an optimal solution quite efficiently for the
given number of SKUs.

Similarly, we ran the ROLQAP model for 10 SKUs and 10 storage locations under different Γ0 and
deviation scenarios. As shown in Table 3, for Γ0, meaning there is no deviation in correlation, GUROBI
achieves an optimal objective function value of 293.7 within an average of 70 seconds CPU time. We
observe that as the Γ0 value increases, the objective function value also increases. Specifically, for
Γ0 = 0 and a 10% deviation, the objective function value is 293.7, whereas for Γ0 = 10 under the same
deviation level, the objective function value rises to 307.1. It can be observed that when Γ0 = 10,
increasing the deviation from 10% to 50% results in a rise in the objective function value from 307.1
to 360.5.

Table 3. ROLQAP model results for 10 SKUs and storage location

Γ0 % of
deviation

Objective function
value

CPU time
(sec)

10 293.7 68.1

0 30 293.7 69.5

50 293.7 70.7

10 297.0 63.4

2 30 303.5 75.1

50 310.0 65.1

10 299.8 65.4

4 30 312.0 69.5

50 324.1 70.9

10 302.5 65.5

6 30 319.9 70.5

50 337.4 72.2

10 304.9 67.2

8 30 327.2 69.2

50 349.5 65.9

10 307.1 61.6

10 30 333.8 71.8

50 360.5 39.1
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We analyzes the model for 12 SKUs and 12 storage locations to examine the impact of increasing SKUs
and storage locations on ROLQAP as presented in Table 4. For Γ0 = 0, and a 10% deviation, the ROLQAP
model yields an objective value of 501.7. The average CPU time for Γ0 = 0, is 2059 seconds. Increasing
the nominal deviation value (𝑐𝑖𝑗) for any given Γ0 leads to a rise in the objective value. For example,
in the ROLQAP model, when Γ0 = 8 with a 10% deviation, the objective value is 516.7, whereas for Γ0 =
8 with a 50% deviation, this value increases to 575.3. By considering the same deviation conditions,
an increase in the number of parameters that can deviate from the nominal value leads to an
increase in the objective function value in the worst-case scenario. For example, with Γ0 = 0 and a
50% deviation, the objective function value is 501.7, whereas for Γ0 = 12, the objective value reaches
599.6. Furthermore, as a result of the analysis, it has been determined that the average CPU time is
observed to be 1754 sec for any scenario.

Table 4. ROLQAP model results for 12 SKUs and storage location

Γ0 % of
deviation

Objective function
value

CPU time
(sec)

10 501.7 2026

0 30 501.7 2038

50 501.7 2113

10 506.3 1225

2 30 515.6 1599

50 524.7 2016

10 510.4 3192

4 30 527.3 2118

50 543.9 1328

10 516.7 1142

8 30 545.8 1117

50 575.3 1155

10 519.1 1015

10 30 553.3 1632

50 587.4 1027

10 521.6 2046

12 30 560.6 1305

50 599.6 1604
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Figure 2. CPU time vs. Number of SKUs for Γ0 = 5 and 30% deviation of nominal values

As the number of SKUs increases, the solution time of the ROLQAP model rises dramatically. The
ROLQAP model was tested with different SKU numbers under the conditions of Γ0 = 5 and 30%
deviation. As shown in Figure 2, when the number of SKUs is between 5 and 10, an optimal solution
can be obtained within a reasonable time frame. However, when the number of SKUs exceeds 10, a
significant increase in solution time is observed. For instance, when the number of SKUs is 12, the
solution time is 1372 seconds, whereas increasing the SKU count to 13 raises the CPU time to 5062
seconds.

5. Conclusion

In conclusion, we consider the uncertainty in the correlation of SKUS demand while assigning prod-
ucts to available storage locations. The main aim is to locate highly correlated SKUs and minimize
the total travel distance of workers during the order-picking process. Marginal distributions and
expected values are computed within the context of the joint distribution to quantify SKU correla-
tions. The problem is modeled as a Quadratic Assignment Problem (QAP), and a linearization version
is presented. The ROLQAP model’s robust counterpart is created by considering the Bertsimas &
Sim (2004) method to reduce the uncertainty model’s computational burden. ROLQAP model is
tested under the scenarios of various 𝛾0, deviation amount, and SKUs. It is remarked that with
SKUs over 13, the problem size makes computational time intractable. For future studies, one can
propose a heuristic or metaheuristic method to solve the large-scale problem of the correlated SKUs
assignment.
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