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Abstract

This study comparatively examines the performance of social choice functions
such as Borda, Copeland, Dodgson, and Kemeny in aggregating rankings in Multi-
Criteria Decision Making (MCDM) problems. The analyses, conducted using a to-
tal of 500,000 datasets, observed that the aggregation results of different social
choice functions were generally similar. Although the Borda and Copeland tech-
niques are advantageous in terms of ease of application, they were found to be
insufficient in obtaining a complete ranking, especially as the number of alterna-
tives increases. This situation is also valid for the Dodgson and Kemeny techniques.
The findings of the study indicate that these techniques provide consensus in the
aggregation of rankings but fail to achieve a complete ranking. In 78% of the rank-
ing aggregations using the techniques considered, a complete ranking could not
be obtained. Additionally, it was determined that the average rate of achieving a
complete ranking was higher in datasets with an even number of rankings com-
pared to those with an odd number of rankings, specifically for the Copeland and
Dodgson techniques. This study evaluates the effectiveness of social choice func-
tions in aggregating MCDM problems and provides significant insights for future
research.
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1. Introduction

Social choice is as old as human history. Individuals can use their choices as they wish. Individuals
who are part of a group, on the other hand, have to come to a common decision with other mem-
bers on matters concerning the group. Collective decisions can be between two people or between
millions of individuals, such as in presidential elections. Bringing together individual choices to a
common ground and to a state in which collective decisions can be made requires certain prede-
fined rules. The social choice theory identifies, analyzes, and evaluates the rules used for collective
decisions (Boehmer & Schaar, 2023; Li et al., 2017).

The modern sense can be traced to the 18th century works of Borda and Condorcet. Borda count is
a technique in which choices are ranked based on a points system which leads to the selection of
the choice with the highest score. Condorcet developed a majority rule system based on a pairwise
comparison of choices and discovered the situation where no choice could be given, which is called
the voting paradox. In the event of a voting paradox, no elections can be held. Various approaches
have been developed by Dodgson (1876), Nanson (1883), Copeland (1951) among others to solve the
voting paradox. The development of the Social Choice Theory in the modern sense began with Black
(1948), Arrow (1951), May (1952), and Sen (1970). The question of how to bring together the different
and competing preferences of a group forms the basis of social choice theory.

However, Arrow (1951), in his doctoral thesis titled “Social Choice and Individual Values,” which sys-
tematized social choice theory, stated that social choice functions contain some inconsistencies
under certain fair criteria and that a perfect social choice function cannot exist. He proved that it
is impossible for a social choice function to simultaneously satisfy the following conditions (Penn,
2015). The actions of the theorem, known in the literature as Arrow’s impossibility theorem, are
briefly outlined below (Arrow, 1951).

𝑁  is a finite set of individuals, where 𝑛 ≥ 2 who want to reach a collective decision; 𝑋 is a finite set
consisting of at least three alternatives from which each individual makes their preference orders,
and 𝑖𝑡ℎ is the display of the choice orderings. where; including ≽𝑖 the expression 𝑥 ≽𝑖 𝑦 shows that
the 𝑖𝑡ℎ individual or a voter prefers alternative 𝑥 at least as much as 𝑦. In this case, the ≽ symbol
indicates a weak preference, the ≻ symbol shows a strong preference and ≈ represents indiffer-
ence. It follows therefore that expression 𝑥 ≻𝑖 𝑦 shows that the individual 𝑖 prefers alternative 𝑥
more strongly than alternative 𝑦 while expression 𝑥 ≈𝑖 𝑦 shows that the individual 𝑖 is indifferent to
alternatives 𝑥 and 𝑦. 𝑓(𝑅𝑖) shows the preference ordering of all individuals (Sen, 1970).

Unrestricted domain: The preferences of all individuals need to be taken into account. For 𝑛 indi-
viduals evaluating the set of alternatives 𝑥, the set 𝑓  must contain all the possible orders. In short,
set 𝑓  should be 𝑓(𝑅1, 𝑅2,…,𝑅𝑛).

Weak Pareto efficiency: If for any 𝑥, 𝑦 ∈ 𝑋, the preference of all n individuals is 𝑥 ≻𝑖 𝑦 then 𝑥 ≻ 𝑦. In
short, any preference chosen unanimously must win.

Independence of irrelevant alternatives: In a case where 𝑓(𝑅1, 𝑅2,…,𝑅𝑛) represent an order set in
which 𝑛 individuals evaluate 𝑥, 𝑦, 𝑧 alternatives and 𝑓(𝑅∗1, 𝑅∗2,…,𝑅∗𝑛) represents a preference profile
in which the same 𝑛 individuals evaluate 𝑥, 𝑧 alternatives, if 𝑥 ≻𝑖 𝑦 ≻𝑖 𝑧 then 𝑥 ≻𝑖 𝑧. In short, in an
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election where 𝑥, 𝑦, 𝑧 candidates are evaluated, the withdrawal of any can didate from the election
should not affect the election results.

Non-dictatorship: The preferences of 𝑅𝑑 individual in the 𝑓(𝑅1, 𝑅2,…,𝑅𝑑,…,𝑅𝑛) preference set
should not dominate the preferences of 𝑛 individuals.

This theorem imposes significant limitations on the design of social choice functions and highlights
the difficulties of an ideal collective decision-making mechanism. However, social choice functions
are actively used in many fields, especially in MCDM. The reasons and benefits of using social choice
functions in MCDM are outlined below.

One of the main functions of multi-criteria decision-making (MCDM) techniques is to rank the con-
sidered alternatives based on the determined criteria. There are many MCDM techniques used to
rank the alternatives which use different analytical processes. The different MCDM techniques fol-
low different analytical processes, hence different rankings could be obtained for the same problem
(Voogd, 1982; Moghimi & Taghizadeh Yazdi, 2017; Zanakis et al., 1998). Before the problems which the
MCDM techniques are expected to solve are outlined, a series of questions arise that need to be
handled first. The first and most important of these questions is the choice of the MCDM technique.
This question usually has more than one answer. Once this question is answered, the next question
arises over the advantages of the preferred MCDM technique over other non-selected techniques,
or whether it is more effective than the others. One can avoid answering these questions by opting
to use more than one MCDM technique suitable for the problem in question and to use aggregation
techniques to reach a complete ranking (Wang et al., 2009).

The inputs of the aggregation techniques are the rankings obtained by the MCDM techniques and
they give, as their output, a consensus/integrated ranking. Obtaining a complete ranking from rank-
ings obtained by the individual MCDM techniques using an aggregation technique is called the in-
tegrated MCDM approach. It has been determined in the literature review that the most commonly
used social choice functions in the field of MCDM are the Borda and Copeland techniques, and Table 1
supports this view.

Table 1. Studies that have used social choice functions in MCDM

No References
Num. of
MCDM

Technique

Num. of
Alternatives

Aggregation Techniques Used

1 Ustinovichius et al. (2007) 3 4 Borda, Copeland

2 Honarmande Azimi et al. (2014) 5 12 Borda*, Copeland*

3 Banihabib et al. (2016) 3 9 Borda*, Copeland

4 Azadfallah (2016) 4 5 Borda*, Copeland*

5 Tuş Işık & Aytaç Adalı (2016) 3 6 Borda, Copeland

6 Moghimi & Taghizadeh Yazdi (2017) 3 22 Borda*, Copeland*

7 Mostafaeipour & Jooyandeh (2017) 5 25 Borda*, Copeland

8 Zavadskas et al. (2017) 4 21 Borda*, Copeland*

9 Çakır & Özdemir (2018) 3 11 Copeland

10 Ömürbek & Akçakaya (2018) 4 22 Borda*

11 Supçiller & Deligöz (2018) 8 5 Borda, Copeland
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No References
Num. of
MCDM

Technique

Num. of
Alternatives

Aggregation Techniques Used

12 Gök Kısa & Perçin (2020) 4 29 Borda*

13 Kiani et al. (2019) 3 9 Borda*, Copeland*

14 Barak & Mokfi (2019) 3 6 Borda

15 Dortaj et al. (2020) 3 10 Borda*, Copeland*

16 Tavana et al. (2020) 3 18 Copeland

17 Donyaii et al. (2020) 6 4 Borda, Copeland

18 Şahin (2021) 7 6 Borda, Copeland

19 Yakut (2020) 2 29 Copeland*

20 Aytekin & Orakçı (2020) 6 4
Borda, Copeland, Nanson,
Average, Cook and Seiford,
Kemeny

21 Firouzi et al. (2021) 3 11 Borda, Copeland

22 Ecer (2021) 6 10 Borda, Copeland

23 Almutairi et al. (2021) 4 15 Borda*, Copeland*

24 Albulescu et al. (2022) 3 6 Borda, Copeland

* tied ranking

Table 1 shows that Borda and Copeland techniques were used in the majority of MCDM studies in
which a single ordering was obtained through aggregation. In 12 of the studies a complete ranking
could not be obtained with only one aggregation technique. It was also found that 11 of the studies
in which a complete ranking of the results of the MCDM could not be obtained had more than 9
alternatives. Complete rankings were obtained from the aggregation of the MCDM results of 11 of the
studies. 7 of the studies in which a complete ranking was obtained were found to have less than 7
alternatives. It can be concluded from the two cases above that when the aggregation is performed
using Borda and Copeland techniques, the possibility of getting a collective ranking decrease with
the increase in the number of alternatives.

As seen in Table 1, complete rankings are generally not obtained in MCDM problems where social
choice functions are used. It can be said that in studies where complete rankings were not obtained,
the inability to achieve a complete ranking in the aggregation of rankings relatively increases as
the number of MCDM techniques and the number of alternatives used in the solution increase.
However, determining these reasons in more detail constitutes the main objective of the study. To
determine in which situations complete rankings cannot be achieved in the aggregation of MCDM
results by social choice functions, a comparative analysis of the results of social choice functions
will be conducted. In this analysis, alongside the commonly used Borda and Copeland techniques
in the aggregation of MCDM results, the Dodgson and Kemeny techniques, which are more useful
in problems with relatively fewer alternatives, will also be used. As a result of these analyses, the
similarities in the ranking aggregation results of the social choice functions used will also be deter-
mined. The similarities of the aggregation results will be evaluated using the Kendall’s coefficient
of concordance test (𝑊  Test). Below, brief information on the steps of the W test and how it is used
is provided.
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Kendall’s coefficient of concordance (𝑊  test), a non-parametric statistic is the equivalent of the
ANOVA test and is used to determine the concordance between the assessments of more than three
decision-makers who are presented with a certain preference profile to rank (Kendall & Smith, 1939).
The hypothesis tests used for the 𝑊  test are given below.

𝐻0 : There is no agreement between the rankings

𝐻1 : There is a complete agreement between the rankings.

If 𝑝 < 0.05, then there is sufficient evidence to reject hypothesis 𝐻0 and there is an agreement be-
tween the rankings. The fit scale of the 𝑊  test is given in Table 2 (Duleba & Moslem, 2018). When the
value of the 𝑊  test is below 0.50, the 𝑝-value is usually greater than 0.05 and this usually leads to a
significant 𝑊  test result if there is a strong agreement.

Table 2. Kendall 𝑊  concordance degree scale

𝑊 Interpretation

0.0 No agreement

0.1 Weak agreement

0.3 Moderate agreement

0.6 Strong agreement

1.0 Perfect agreement

Table 3 outlines the steps and formulas that should be applied in the Kendall 𝑊  test rankings in the
presence or absence of complete ranking (Sidney, 1957).

Table 3. Steps for Kendall’s Coefficient of Concordance

Parameter description

𝑠 Shows the deviations of the rank sums of the alternatives.

𝑘 Number of rankings

𝑁 Number of alternatives

𝑊 Kendall 𝑊  Coefficient of Concordance

𝑇 It is the value that should be calculated when there is no exact consensus between the
rankings.

When there is a complete ranking: 𝑠 = ∑(𝑅𝑗 −
∑𝑅𝑗
𝑁 )

2
, 𝑊 = 𝑠

( 112)𝑘2(𝑁3−𝑁)

If there is no complete ranking: 𝑠 = ∑(𝑅𝑗 −
∑𝑅𝑗
𝑁 )

2
, 𝑇 = ∑ (𝑡3−𝑡)

12 , 𝑊 = 𝑠
( 112)𝑘2(𝑁3−𝑁)−𝑘∑𝑇

2. Aggregation of Social Choices

Social choice functions are those in which individual preferences are evaluated together and which
enable collective decisions. Social choice functions don’t just stop at the selection of the winning
candidate, they also indicate how the other candidates ranked against each other. Social choice
functions have different properties, and this may lead to different results if different social choice
functions are applied to the same rankings (Heckelman & Miller, 2015). In Table 4, voting rules, social
choice functions, and some definitions are briefly explained. (The notations were explained in the
previous section)
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Table 4. Social election functions, rules and some definitions

Condorcet The Condorcet winner is the most preferred candidate in pairwise comparisons against all
other candidates. Where 𝑥, 𝑦, 𝑧 ∈ 𝑋; 𝑥 ≻ 𝑦 and 𝑥 ≻ 𝑧 then 𝑥 is the Condorcet winner.

Condorcet
Paradox

A Condorcet paradox arises when no candidate is chosen or when these candidates cannot
gain an advantage over each other. In the pairwise comparison of the candidates, it occurs
when candidate 𝑥 is preferred over candidate 𝑦, candidate 𝑦 over candidate 𝑧, and candidate
𝑧 over candidate 𝑥. The Condorcet paradox is said to occur where the preferences are cyclic 
𝑥 ≻𝑖 𝑦 ≻𝑖 𝑧 ≻𝑖 𝑥.

Condorcet
Consistency

The Condorcet winner from all the voting methods or choice functions may not be named
the winner. The technique that declares the Condorcet winner as the overall winner is
considered a Condorcet Consistent technique. While Copeland, Kemeny, Nanson, and
Baldwin are considered Condorcet consistent techniques, Borda and Dodgson are not
Condorcet consistent techniques (Rossi et al., 2011; Gaertner, 2006). In other words, the
Condorcet winner, who ranks first or is the most preferred candidate in pairwise
comparisons also ranks first in Copeland, Kemeny, Nanson, and Baldwin techniques, whereas
the order could change in Borda and Dodgson techniques.

Plurality Where 𝑥, 𝑦, 𝑧 ∈ 𝑋,𝑛 = 𝐴 and 𝑥 + 𝑦 + 𝑧 = 𝐴. If 𝑥 > 𝑦 and 𝑥 > 𝑧, 𝑥 is the most preferred
candidate. Where 100 people take a collective decision vote on three candidates 𝑥, 𝑦, 𝑧 as 
𝑥 = 40, 𝑦 = 32 and 𝑧 = 28, candidate 𝑥 is the choice that wins with the plurality vote.

Majority Where 𝑥, 𝑦, 𝑧 ∈ 𝑋,𝑛 = 𝐴 and 𝑥 + 𝑦 + 𝑧 = 𝐴. If 𝑥 > 𝑦 + 𝑧, 𝑥 becomes the majority candidate.
Where 100 people take a collective decision vote on three candidates the majority winner is
the candidate who is preferred by at least 1002 + 1 = 51 of the people.

Plurality
with runoff

It is an iterative process that starts with the elimination of the least preferred candidate in
the first round and one of the two last remaining candidates is declared the Condorcet
winner.

Borda In the aggregation of the rankings with the Borda rule, points are given to the alternatives
according to their orders and they are ranked according to the sum of these points. In an
aggregation with 𝑚 alternatives, the most preferred alternative is given 𝑚− 1 points, the
second most preferred alternative is given 𝑚− 2 and alternative ranked 𝑖 is given 𝑚− 𝑖
points.

Dodgson The Dodgson winning candidate is closest to the Condorcet winning candidate. Dodgson
winner candidate is the candidate who needs the least preference change to be the
Condorcet winner candidate ((Bartholdi et al., 1989). In the following preference profiles
between four candidates 𝐴, 𝐵, 𝐶 , 𝐷; 𝐴 > 𝐵 > 𝐶 > 𝐷, 𝐵 > 𝐷 > 𝐴 > 𝐶 and 𝐶 > 𝐷 > 𝐴 > 𝐵,
candidates 𝐴, 𝐶 and 𝐷 need at least two preference changes to become the Condorcet
winner while alternative 𝐵 needs at least one preference change. So, candidate 𝐵 who is the
closest to becoming the Condorcet winner becomes the Dodgson winner.

Copeland Copeland winner is the candidate who wins the most in pairwise comparisons. Copeland
points are determined for each alternative as follows; where 𝑥, 𝑦 ∈ 𝑋 the Copeland score for
alternative 𝑥 is calculated as; ∑(𝑥 ≻𝑖 𝑦) −∑(𝑦 ≻𝑖 𝑥).

Nanson and
Baldwin

The Nanson and Baldwin rules consist of the iterative process of the Borda function. In the
Nanson rule, preferences below the average of Borda scores are eliminated and the process
continues until only one preference remains. In the Baldwin rule, the process is done by
eliminating the candidate with the smallest Borda score until only one choice remains (Rossi
et al., 2011).

Kemeny Kemeny (1959) proposed a technique that calculates the distance between the current
rankings obtained in any given vote and all possible rankings. The closest ranking to the
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possible rankings from the existing rankings is considered as the complete ranking. The
distance between two rankings like 𝑅 and 𝑅′ is determined as; 𝑑(𝑅,𝑅′) = |(𝑅 − 𝑅′) ∪ (𝑅′ −
𝑅)| . This can further be explored by defining two preferences 𝑗 and 𝑘 from the two rankings 
𝑅 and 𝑅′ as 𝑑(𝑅,𝑅′) = ∑𝑑(𝑗, 𝑘). If there is a complete regarding alternatives and in the two
rankings 𝑅 and 𝑅′, then 𝑑(𝑗, 𝑘) = 0. However, if 𝑗 is superior to 𝑘 in R but 𝑘 is superior to 𝑗 in 
𝑅′, then 𝑑(𝑗, 𝑘) = 2; if 𝑗 is superior to 𝑘 in 𝑅 but 𝑗 is indifferent to 𝑘 in the 𝑅′ ranking, that is,
if the two preferences have the same order, 𝑑(𝑗, 𝑘) = 1. (Bartholdi et al., 1989; Gaertner,
2006).

Applying different Multi-Criteria Decision Making (MCDM) techniques to the same problem leads to
different results. Social choice functions are used to convert these different rankings into a single
complete ranking. These functions help decision-makers combine the results obtained from differ-
ent MCDM techniques, allowing for more consistent and reliable decisions, reducing conflicts be-
tween individual preferences, and assisting in forming a collective decision. The use of social choice
functions contributes to obtaining more comprehensive and objective results in MCDM problems
and adds significant value to studies in this field.

Situations that may arise from using social choice functions in the field of MCDM, the suitability
of social choice functions for the MCDM field, and how these functions can be integrated into the
decision-making process require in-depth analysis and research. The success of this integration
depends on how well social choice functions reflect and address the complexity and dynamics of
specific MCDM problems. For this purpose, a comparative analysis of social choice functions is con-
ducted in Section 3.

3. Comparative Analysis of Social Choice Function in the Field of MCDM

In this section, the aim is to compare the results obtained by applying the Dodgson and Kemeny
techniques, in addition to the Borda and Copeland techniques, which are frequently used in MCDM
problems. For this purpose, 500,000 datasets containing 3, 4, 5, 6, 7, 10, 15, 20, 30, and 50 alternatives
and 3, 4, 5, 6, 7 rankings were used. For each ranking, 100,000 datasets were randomly generated and
produced through a script written in R. The R packages used include irr, votesys, GGally, and MASS.
The dataset rankings obtained were aggregated using the Borda, Copeland, Dodgson, and Kemeny
techniques. Kendall’s 𝑊  test was used to examine the relationship between the aggregation results
of the techniques and the rate of obtaining a complete ranking. The purpose of these analyses and
the potential benefits of the results obtained are outlined below.

Firstly, the aim is to compare the performance of widely used social choice functions such as Borda,
Copeland, Dodgson, and Kemeny on datasets created with different numbers of alternatives and
rankings. Another important objective is to evaluate the ability of social choice functions to provide
consensus in aggregating rankings and to achieve a complete ranking. This can provide a significant
advantage, especially when working with large and complex datasets.

The results of this study will demonstrate how social choice functions can be used more effectively in
MCDM problems and will offer suggestions for improving the current methods in this field. Addition-
ally, comparing the results obtained by using various MCDM techniques and social choice functions
together will help us better understand the advantages and disadvantages of these techniques and
determine which techniques are more suitable in which situations. This will contribute to decision-
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makers making more informed and accurate decisions. Moreover, this study on the applicability and
effectiveness of social choice functions in the field of MCDM will provide important insights and
directions for future research, significantly contributing to the literature and expanding the current
knowledge in this field. In summary, this study will help us better understand the limitations of so-
cial choice functions.

The general representation of the R codes for the rankings used in the analysis and the compared
techniques is given in Algorithm 1.

Algorithm 1. General Representation of The Codes

library(irr)
library(votesys)
library(GGally)
library(MASS)
  s1 <- c(…)
  s2 <- c(…)
  sn <- c(…)
  matrisA <- t(as.matrix(data.frame(s1,s2,…,sn)))
  matris_A <- create_vote(matrisA, xtype = 1 )
  B <- borda_method(matris_A)
  C <- cdc_copeland(matris_A)
  D <- cdc_dodgson(matris_A)
  Bs <- rank(B$other_info$count_min, ties.method = 'average')
  Cs <- rank(-C$other_info$copeland_score, ties.method = 'average')
  Ds <- rank(D$other_info$dodgson_quick, ties.method = 'average')
      }
    }
  }
  if(Alt<=8){
    K <- cdc_kemenyyoung(matris_A)
    Ks <- order(rank(K$other_info$win_link[1,], ties.method = 'average'))
    S <- data.frame(Bs,Cs,Ds,Ks) 
  }else{
    S <- data.frame(Bs,Cs,Ds) 
  }                              
    W <- c(kendall(S,correct = TRUE)) 
    W <- c(kendall(S,correct = FALSE))

Kendall 𝑊  test was used to determine the similarities between the aggregation results. The analysis
also included a test of whether the final rankings obtained from the aggregation of the rankings by
the individual techniques had any tied situations.

The degree of agreement between the results obtained by Borda, Copeland, Dodgson and Kemeny
aggregation techniques and the number of discordant datasets are given in Table 5.
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Table 5. Kendall W test values

NoR NoA Min. 1st Q Med. Avg. 3rd Q Max.
Discordant

Sets

3 0.25 1 1 0.9502 1 1 526

4 0.7353 0.9559 0.9888 0.9685 1 1 0

5 0.25 0.95 0.9797 0.9665 0.9905 1 6

6 0.65 0.9522 0.973 0.9664 0.9928 1 0

7 0.689 0.9518 0.9715 0.965 0.9952 1 0

10 0.8743 0.974 0.9833 0.9803 0.9898 1 0

15 0.9021 0.9787 0.9848 0.9831 0.9895 0.9996 0

20 0.9434 0.9819 0.9865 0.9854 0.9901 0.9982 0

30 0.9594 0.9857 0.9888 0.9881 0.9912 0.9974 0

3

50 0.9743 0.9893 0.9911 0.9908 0.9927 0.997 0

3 0.25 0.8167 0.9423 0.8732 1 1 649

4 0.25 0.8716 0.9295 0.9036 0.9797 1 140

5 0.25 0.8782 0.9295 0.912 0.9605 1 17

6 0.3517 0.8913 0.9305 0.9187 0.9601 1 2

7 0.4675 0.9002 0.9338 0.9239 0.9587 1 1

10 0.7717 0.9592 0.9738 0.9687 0.9836 0.9986 0

15 0.8685 0.9675 0.977 0.9742 0.984 0.9978 0

20 0.8824 0.9728 0.9798 0.978 0.9852 0.9982 0

30 0.9337 0.9788 0.9834 0.9823 0.9872 0.9965 0

4

50 0.963 0.9839 0.9868 0.9862 0.9892 0.9953 0

3 0.25 0.95 1 0.9424 1 1 659

4 0.4062 0.925 0.9808 0.9546 1 1 30

5 0.25 0.9342 0.9633 0.9554 0.9905 1 8

6 0.5761 0.9366 0.9653 0.9549 0.9802 1 0

7 0.689 0.9395 0.963 0.9553 0.9787 1 0

10 0.8102 0.9658 0.9774 0.9735 0.9857 1 0

15 0.8985 0.974 0.9812 0.9793 0.9866 0.9988 0

20 0.9387 0.9796 0.9844 0.9832 0.9883 0.9979 0

30 0.9508 0.985 0.9881 0.9873 0.9905 0.9969 0

5

50 0.9744 0.9898 0.9915 0.9911 0.9928 0.997 0

3 0.25 0.8167 0.9423 0.893 1 1 1094

4 0.0625 0.891 0.9295 0.9154 0.9797 1 72

5 0.3214 0.89 0.9359 0.921 0.9652 1 22

6 0.49 0.9033 0.938 0.927 0.9638 1 2

7 0.5739 0.9083 0.9398 0.9303 0.9627 1 0

10 0.7829 0.9588 0.9733 0.9682 0.9833 0.9987 0

15 0.8665 0.9685 0.9775 0.9749 0.9842 0.9988 0

20 0.9082 0.9745 0.9809 0.9792 0.9858 0.9979 0

30 0.9274 0.9812 0.9852 0.9842 0.9883 0.9962 0

6
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NoR NoA Min. 1st Q Med. Avg. 3rd Q Max.
Discordant

Sets

50 0.9688 0.987 0.9891 0.9887 0.9909 0.9965 0

3 0.25 0.95 1 0.9391 1 1 715

4 0.4038 0.9118 0.9808 0.9481 1 1 47

5 0.25 0.9261 0.9595 0.9477 0.9905 1 21

6 0.5577 0.9299 0.9601 0.9491 0.9786 1 0

7 0.6473 0.9326 0.9587 0.9497 0.9773 1 0

10 0.7392 0.9617 0.9746 0.9704 0.9837 1 0

15 0.787 0.9722 0.9797 0.9775 0.9854 0.9984 0

20 0.8994 0.9781 0.9834 0.982 0.9874 0.9982 0

30 0.9456 0.9843 0.9874 0.9867 0.9899 0.997 0

7

50 0.975 0.9899 0.9915 0.9912 0.9928 0.9965 0

NoA: Number of Alternative, NoR: Number of Ranking

Table 5 shows that there is a lack of consensus in the aggregation results of the datasets consisting
of 3, 4 and 5 alternatives while Table 4 shows a weak agreement. The number of discordant datasets
is higher in the datasets with 4 and 6 rankings than in the datasets with 3,5 and 7 rankings.

The consensus between the aggregation results increases with the increase in the number of alter-
natives. There is also a positive correlation between the number of rankings and the aggregation
results. We can therefore conclude that as the number of alternatives and the number of rankings
increase, the consensus between the aggregation results increases.

Table 6 gives the number of datasets in which a complete ranking could not be obtained based
on the aggregation techniques. The Kemeny technique is a distance-based aggregation technique
hence the solution is obtained by determining the distance of the given rankings from an imaginary
guidance vote. This implies that this technique does not suffer from the consensus problem since
the guidance vote already has a complete ranking. However, since the distances of the rankings to
the guidance vote may be the same, there may be more than one complete ranking with the Kemeny
technique. Therefore, the results of the Kemeny technique could not be calculated in Table 6

Table 6. Number of datasets without complete rankings

Number of Ranking Number of Alternative Borda Copeland Dodgson

3 2233 526 1388

4 4452 1710 3522

5 6164 3306 5468

6 7318 4827 7093

7 8194 6505 8275

10 9299 9248 9644

15 9865 9988 9977

20 9976 10000 9999

30 9998 10000 10000

3

50 10000 10000 10000
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Number of Ranking Number of Alternative Borda Copeland Dodgson

3 3153 4190 6903

4 4998 5596 8677

5 6192 7030 9476

6 7159 7929 9799

7 7744 8489 9935

10 8999 9550 9996

15 9749 9929 10000

20 9954 9986 10000

30 9998 10000 10000

4

50 10000 10000 10000

3 2469 659 1676

4 4370 2139 3993

5 5750 3934 5809

6 6715 5729 7319

7 7345 7362 8231

10 8701 9688 9536

15 9625 9998 9938

20 9888 10000 10000

30 10000 10000 10000

5

50 10000 10000 10000

3 2583 3979 6012

4 4299 5144 7910

5 5429 6558 8933

6 6320 7549 9446

7 7044 8218 9726

10 8483 9399 9978

15 9476 9907 9998

20 9829 9990 10000

30 9982 10000 10000

6

50 10000 10000 10000

3 2303 715 1744

4 3842 2259 3956

5 5077 4220 5689

6 5988 6068 6981

7 6683 7650 7969

10 8223 9759 9374

15 9281 9999 9887

20 9758 10000 9984

30 9963 10000 10000

6

50 9999 10000 10000

alphanumeric 12 (1), 21 - 38 31



Using Social Choice Function for Multi Criteria Decision Making Problems | Orakçı & Özdemir, 2024

As seen in Table 6, the number of datasets with complete rankings decreases as the number of al-
ternatives increases, and a complete ranking was not found in almost all the datasets with more
than 20 alternatives. The rate at which complete rankings are obtained using aggregation techniques
depends on the number of alternatives. These rates of change are given in Table 7. The rates are
grouped as datasets with few (3,4,5,6,7); medium (10,15,20) and many alternatives (30,50).

Table 7. Mean rates of failure to obtain a complete ranking based on the number of alternatives

Number of
Alternative

Borda Copeland Dodgson

Few (3,4,5,6,7) 0,5353 0,4891 0,6637

Medium (10,15,20) 0,9407 0,9829 0,9887

Many (30,50) 0,9994 10000 10000

Table 7 shows that the probability of obtaining a complete ranking decreases with the increase in the
number of alternatives. Although the probability of obtaining a complete ranking is relatively high
in datasets with a few alternatives, it can be seen from the table that at least half of the datasets
did not achieve a complete ranking. In datasets with a medium number of alternatives, the rate of
not obtaining a complete ranking is at least 94%, while in datasets with a large number of alterna-
tives, a complete ranking was not obtained in any of them. Furthermore, based on the aggregation
technique, the average rate of not obtaining a complete ranking is 75% for the Borda technique, 74%
for the Copeland technique, and 83% for the Dodgson technique. The overall average rate of not
obtaining a complete ranking is approximately 78%. Therefore, it can be concluded that, especially
in cases with a large number of alternatives, the Borda and Copeland techniques, which are widely
used in MCDM problems, do not achieve a complete ranking.

Figure 1 shows that the average rate of obtaining a complete ranking decreases in datasets with an
even number of rankings (4, 6) when using the Copeland and Dodgson techniques, while this average
rate increases in datasets with an odd number of rankings (3, 5, 7). In other words, having an odd
number of rankings increases the likelihood of obtaining a complete ranking, whereas having an
even number of rankings decreases this likelihood. On the other hand, the Borda technique also
shows a decrease in the average rate of obtaining a complete ranking as the number of rankings
increases, but it does not exhibit a fluctuating pattern.
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Figure 1. The Average of datasets for which consensus could not be obtained through aggregation
techniques

The reason for the higher average rate of obtaining a complete ranking in datasets with an even
number of rankings compared to those with an odd number of rankings when using the Dodgson
technique can be explained by the fact that a candidate close to the Condorcet winner can be more
easily determined in rankings with an odd number of rankings. The rankings of the datasets in Table 8
will help clarify this point more clearly.

Table 8.

First Ranking Second Ranking

s1 s2 s3 s4 s1 s2 s3 s4 s5

1 a a b b 1 a a b b c

2 b b a a 2 d d c d b

3 d c c d 3 c c a c a

4 c d d c 4 b b d a d

In the rankings in Table 8, the alternatives “a” and “b” are the Dodgson winners in the first ranking
with an even number of rankings. In this case, a consensus cannot be achieved. The second ranking
has an odd number of places, which increases the probability of breaking the tie, thereby increasing
the probability that one alternative will be declared the Dodgson winner. In the second ranking,
alternative “b” is the Dodgson winner as it is the closest candidate to the Condorcet winner. In short,
the odds of becoming the Condorcet winner increase in favor of any candidate in rankings with an
odd number of rankings.

In comparisons using the Copeland technique, since the Copeland winner is determined as the win-
ner in the pairwise comparisons of the alternatives, the chances increase in favor of a candidate
in rankings with an odd number of rankings. This also increases the probability of obtaining a com-
plete ranking.
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Figure 2. The average of failure to achieve consensus based on number of rankings.

In Figure 2, it can be seen that the average rates of not obtaining a complete ranking increase de-
pending on the number of alternatives considered. Particularly in sets with more than 20 alterna-
tives, it is common not to achieve a complete ranking. This situation is also clearly seen in Table
6. Additionally, according to the data in Figure 2, it has been observed that as the number of rank-
ings in the samples increases, the average rates of not obtaining a complete ranking also increase.
However, it can be said that the inability to obtain a complete ranking is more dependent on the
number of alternatives.

4. Conclusion

According to Kendall’s coefficient of concordance results, there is a high concordance in the aggre-
gation of rankings among the techniques used in this study, including the frequently used Borda and
Copeland techniques, as well as the Dodgson and Kemeny techniques in MCDM problems. However,
it has also been determined that the average probability of not obtaining a complete ranking in the
techniques included in the analysis is more than 78%. Although the Copeland technique has a higher
probability than the Borda and Dodgson techniques in datasets with a small number of alternatives
(3, 4, 5, 6, and 7), this rate was found to be approximately 49%. The Borda technique performed
better than the Copeland and Dodgson techniques in terms of the probability of achieving a com-
plete ranking in datasets with a moderate number of alternatives (10, 15, and 20), but even here,
the probability of not obtaining a complete ranking was still 94%. In datasets with a large number
of alternatives (30, 50), a complete ranking could not be obtained with the Copeland and Dodgson
techniques, whereas the probability of not obtaining a complete ranking with the Borda technique
in the same datasets was found to be 99.94%. Additionally, it was observed that the probability of
not obtaining a complete ranking with the Copeland and Dodgson techniques in datasets with an
even number of rankings was higher compared to datasets with an odd number of rankings. Given
the high probabilities of failing to obtain a complete ranking, the suitability of the Borda, Copeland,
Dodgson, and Kemeny techniques in the aggregation of MCDM problems becomes debatable.

The findings highlight the limitations and challenges in the literature regarding the use of social
choice functions in the field of MCDM. The extensive datasets and analysis methods used in this
study have comprehensively evaluated how social choice functions perform on datasets with dif-
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ferent numbers of alternatives and rankings. The results underscore the limitations of these tech-
niques in achieving complete rankings in MCDM problems and emphasize potential research areas
for future studies.

Combining the rankings obtained with MCDM techniques is important because often more than one
technique can be used in selecting the appropriate technique for the problem at hand. This study
presents the results of using social choice functions in aggregating rankings in problems of differ-
ent dimensions and shows that an increase in the number of alternatives has a negative impact on
achieving a complete ranking. The results indicate that there is a need for more effective techniques
for the aggregation of rankings in MCDM problems. These findings provide an important basis for
understanding the limitations of current techniques and highlight the need for developing more
effective methods in the field of MCDM.
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