@Article{AJ_2021.09.02.STAT.04, doi = { 10.17093/alphanumeric.970448 }, author = { Uğur Arcagök and Çiğdem Arıcıgil Çilan }, title = { A Proposal Method for Missing Value Analysis: Cluster Analysis Approach }, abstract = { Imputing values to missing cases is a subject that is frequently met in the fields of Machine Learning and Data Mining, and that require the researchers to study it. It is known that many computer-based analysis algorithms operate under assumption that there is no missing case. The lack of sufficient search of missing case by the researchers is able to negatively affect the performance of analysis results. In this study, it was studied with a data set consisting of 52 variables in order to measure the performance of Corporate Sustainability of district municipalities in Istanbul. Little’s MCAR was applied on 17 variables containing missing case, and it was determined that missing cases were MCAR, namely completely at random. And then Clustering Analysis was applied on 35 variables not containing missing case, and missing case imputations were made based on the clusters formed. It was observed that the cluster labels of municipalities, whose clustering analysis results obtained by data set with 35 variables that didn’t contain missing case, and whose results obtained by the data set with 52 variables following imputation were the same, didn’t change. The lack of change of cluster labels of municipalities indicates that the data set formed following imputation doesn’t draw away from the main data, namely that the data structure doesn’t get disrupted. Consequently, it can be said that clustering analysis is effective in terms of imputing more representative values in the imputation of missing case. } journal = { Alphanumeric Journal }, year = { 2021 }, volume = { 9 }, number = { 2 }, pages = { 299-310 }, url = { https://alphanumericjournal.com/article/a-proposal-method-for-missing-value-analysis-cluster-analysis-approach }, }