• ISSN: 2148-2225 (online)

Ulaştırma ve Lojistik Kongreleri

alphanumeric journal

The Journal of Operations Research, Statistics, Econometrics and Management Information Systems

Analysis of The Countries According to The Prosperity Level with Data Mining


Şebnem Koltan Yılmaz, Ph.D.

Sibel Şener, Ph.D.


Abstract

Data mining (DM) includes techniques for finding meaningful information hidden in these massive data stacks. The aim of this study is to divide the countries according to their prosperity levels with Cluster Analysis (CA), which is one of the DM techniques. In this context, the 2019 data of 167 countries within the updated 12 prosperity indicators in The Legatum Prosperity Index (LPI) were used. Countries were divided into clusters with the Ward’s algorithm, and the Elbow method was used for verifying of the optimal cluster number. The similarities between the countries were determined with the K-Means, and Tukiye's place in the clusters was determined. The results show that countries are divided into three clusters. The most significant indicators in separating them into clusters are "market access and infrastructure, education, investment environment", and the least significant indicators are "social capital, natural environment, safety and security". It has been determined that Turkiye is located in the middle prosperity level cluster and its "health, living conditions, education" indicators are the highest, while its "natural environment, personal freedom, management" indicators are the lowest.

Keywords: Cluster Analysis, Data Mining, Legatum Prosperity Index, Prosperity Level

Jel Classification: C46


Suggested citation

Koltan Yılmaz, Ş., Şener, S. (2022). Analysis of The Countries According to The Prosperity Level with Data Mining. Alphanumeric Journal, 10(2), 85-104. https://doi.org/10.17093/alphanumeric.1002461

References

  • Abu Sharkh, M. & Gough, I. (2010). Global welfare regimes a cluster analysis. Global Social Policy, 10(1), 27-58. DOI: 10.1177/1468018109355035
  • Akar, S. (2014). Türkiye’de daha iyi yaşam endeksi: OECD ülkeleri ile karşılaştırma [The better life index in Turkey: Comparison with OECD countries]. Journal of Life Economics, 1, 1-12. DOI: 10.15637/jlecon.201416987
  • Akar, H. (2015). Farklılaşan refah ölçüm yöntemleri ve eğitim açısından Türkiye’nin değerlendirilmesi [The diversifying measures of welfare and evaluation of Turkey in the context of education]. Finance, Politics & Economic Reviews, 52(606), 21-38. Retrieved from http://www.ekonomikyorumlar.com.tr/files/articles/152820006117_2.pdf
  • Akkuş, B. & Zontul, M. (2019). Veri madenciliği yöntemleri ile ülkeleri gelişmişlik ölçütlerine göre kümeleme üzerine bir uygulama [An application on clustering countries with data mining methods based on development criteria]. AURUM Journal of Engineering Systems and Architecture, 3(1), 51-64. Retrieved from https://dergipark.org.tr/tr/pub/ajesa/issue/47400/598179
  • Albayrak, A. S. & Koltan Yılmaz, Ş. (2009). Veri madenciliği: Karar ağacı algoritmaları ve İMKB verileri üzerine bir uygulama [Data mining: Decision tree algorithms and an application on ISE data]. Süleyman Demirel University Journal of Faculty of Economics Administ. Sciences, 14(1), 31-52. Retrieved from https://dergipark.org.tr/tr/pub/sduiibfd/issue/20831/223135
  • Ali, H. H. & Kadhum, L. E. (2017). K-Means clustering algorithm applications in data mining and pattern recognition. International Journal of Science and Research (IJSR), 6(8), 1577-1584.
  • Alptekin, N. & Yeşilaydın, G. (2015). OECD ülkelerinin sağlık göstergelerine göre bulanık kümeleme analizi ile sınıflandırılması [Dividing OECD countries according to health indicators using fuzzy clustering analysis]. Journal of Business Research Turk, 7(4), 137-155. Retrieved from https://isarder.org/index.php/isarder/article/view/274
  • Bambra, C. (2007). Defamilisation and welfare state regimes: A cluster analysis. International Journal of Social Welfare, 16, 326-338. DOI: 10.1111/j.1468-2397.2007.00486.x
  • Better Life Index (BLI) (2019). “What’s the Better Life Index?”, http://www.oecdbetterlifeindex.org/ about/better-life-initiative/, (Accessed Date: 28.12. 2020).
  • Bholowalia, P. & Kumar, A. (2014). EBK-Means: A Clustering technique based on Elbow method and K-Means in WSN. International Journal of Computer Applications, 105(9), 17-24. DOI: 10.5120/18405-9674
  • Budsaratragoon, P. & Jitmaneeroj, B. (2021). Reform priorities for prosperity of nations: The Legatum Index. Journal of Policy Modeling, 43, 657-672. DOI: 10.1016/j.jpolmod.2020.09.004
  • Büchs, M. (2021). Sustainable welfare: Independence between growth and welfare has to go both ways. Global Social Policy, 21(2), 323-327. DOI: 10.1177/14680181211019153
  • Chatzopoulos, D. & Derri, V. (2004). Grading profiles of high school physical educators: A cluster analysis. Journal of Human Movement Studies, 47, 061-073.
  • Cornish, R. (2007). Statistics: Cluster Analysis. Mathematics Learning Support Centre, http://www.statstutor.ac.uk/resources/uploaded/clusteranalysis.pdf, (12.05.2022).
  • Crowther, D., Kim, S., Lee, J., Lim, J. & Loewen, S. (2021). Methodological synthesis of cluster analysis in second language research. Language Learning, 71(1) 99-130. DOI: 10.1111/lang.12428
  • Demiralay, M. & Çamurcu, A. Y. (2005). CURE, AGNES ve K-Means algoritmalarındaki kümeleme yeteneklerinin karşılaştırılması [Comparison of clustering characteristics of CURE, AGNES and K-Means algorithms]. İstanbul Commerce University Journal of Science, 4(8), 1-18. Retrieved from https://dergipark.org.tr/tr/pub/ticaretfbd/issue/21348/229000
  • Değirmenci, N. & Yakıcı Ayan, T. (2020). OECD ülkelerinin sağlık göstergeleri açısından bulanık kümeleme analizi ve TOPSIS yöntemine göre değerlendirilmesi [Evaluation of OECD countries according to fuzzy clustering analysis and TOPSIS method in terms of health indicators]. Hacettepe University Journal of Economics and Administrative Sciences, (38)2, 229-241. DOI: 10.17065/huniibf.592991
  • Dinç Cavlak, Ö. (2019). Sürdürülebilir toplum göstergelerinin hiyerarşik kümeleme analizi yöntemiyle incelenmesi [Hierarchical clustering analysis of sustainable society indicators]. Third Sector Social Economic Review, 54(4), 2053-2073. DOI: 10.15659/3.sektor-sosyal-ekonomi.19.12.1125
  • Egloff, B., Schmukle, S. C., Burns, L. R., Kohlmann, C. W. & Hock, M. (2003). Facets of dynamic positive affect: Differentiating joy, interest, and activation in the positive and negative affect schedule (PANAS). Journal of Personality and Social Psychology, 85(3), 528-540. DOI: 10.1037/0022-3514.85.3.528
  • Global Competitiveness Index (GCI) (2019). “Global Competitiveness Report”, https://www.weforum.org/ reports/how-to-end-a-decade-of-lost-productivity-growth, (Accessed Date: 11. 01. 2021).
  • Gülden, T. & Karakış, E. (2019). OECD ülkelerinin ekonomik özgürlüklerine göre kümeleme analizi ile sınıflandırılması [Classification of OECD countries according to economic freedom with cluster analysis]. Journal of Economics and Administrative Sciences, 20(2), 297-316. Retrieved from http://esjournal.cumhuriyet.edu.tr/tr/pub/issue/50375/614708
  • Han, J., Kamber, M. & Pei, J. (2012). Data mining concepts and techniques. Waltham: Morgan Kaufmann Publishers is An Imprint of Elsevier.
  • Humaira, H. & Rasyidah, R. (2018). Determining the appropiate cluster number using Elbow method for K-Means algorithm, WMA-2 2018, DOI: 10.4108/eai.24-1-2018.2292388
  • Jeon, J. Y., Choi, J. S. & Byun, H. G. (2016). Implementation of Elbow method to improve the gases classification performance based on the RBFN-NSG Algorithm. Journal of Sensor Science and Technology, 25(6), 431-434. DOI: 10.5369/JSST.2016.25.6.431
  • Kangallı, S. G., Uyar, U. & Buyrukoğlu, S. (2014). OECD ülkelerinde ekonomik özgürlük: bir kümeleme analizi [Economic freedom in OECD countries: A cluster analysis]. International Journal of Alanya Faculty of Business, 6(3), 95-109. Retrieved from https://dergipark.org.tr/tr/pub/uaifd/issue/21601/231994
  • Ketchen, D. J. Jr. & Shook, C. L. (1996). The application of cluster analysis in strategic management research: an analysis and critique. Strategic Management Journal, 17, 441-458. Retrieved from http://www.jstor.org/stable/2486927
  • Koltan Yılmaz, Ş. & Patır, S. (2011). Kümeleme analizi ve pazarlamada kullanımı [Cluster analysis and its usage in marketing]. Journal of Academic Approaches, 2(1), 91-113. Retrieved from https://dergipark.org.tr/tr/pub/ayd/issue/3325/46150
  • Kowalski, R. & Wałęga, G. (2015). Defamilisation in Central and Eastern Europe: A Cluster Analysis. The 9th International Days of Statistics and Economics, September 10-12, Prague, 855-863.
  • Legatum Prosperity Index (LPI) (2018). “The Legatum Prosperity Index 2018 Report”, https://li.com/reports/2018-legatum-prosperity-index/, (Accessed Date: 09.04.2020).
  • Legatum Prosperity Index (LPI) (2019a). “The Legatum Prosperity Index”, https://www.prosperity.com/about/summary/, (Accessed Date: 09.04.2020).
  • Legatum Prosperity Index (LPI) (2019b). “The Legatum Prosperity Index Methodology Report”, https://prosperitysite.s3-accelerate.amazonaws.com/7515/8634/9002/Methodology_for_ Legatum_Prosperity_Index_2019.pdf, (Accessed Date: 09.04.2020).
  • Levent, M. & Özarı, Ç. (2019). EDAS yöntemi ve kümeleme analizi ile G-10 ülkelerinin ekonomik özgürlük kriterleri ile değerlendirilmesi [Evaluating economic freedom’ criterias of G-10 countries with EDAS method and cluster analysis]. The Journal of Turk-Islam World Social Studies, 6(22), 219-235. DOI: 10.29228/TIDSAD.30876
  • Levy-Carciente, S., Phélan, C. M. & Perdomo, J. (2020). Prosperity in Spain and Latin America: myths and facts. International Journal of Advance Study and Research Work, 3(7), 2581-5997. DOI: 10.5281/zenodo.3958006
  • Mamat, A. R., Mohamed, F. S., Mohamed, M. A., Rawi, N. M. & Awang, M. I. (2018). Silhouette index for determining optimal k-means clustering on images in different color models. International Journal of Engineering & Technology, 7(2.14), 105-109. DOI: 10.14419/ijet.v7i2.14.11464
  • Markou, G., Palaiolouga, E., Kokkinakos, P., Markaki, O., Koussouris, S. & Askounis, D. (2015). “Prosperity Indicators: A Landscape Analysis”, http://ceur-ws.org/Vol-1553/paper6.pdf, (Accessed Date: 08.02.2021).
  • Maylawati, D.S., Priatna,T. Sugilar, H. & Ramdhani, M.A. (2020). Data science for digital culture improvement in higher education using K-means clustering and text analytics. International Journal of Electrical and Computer Engineering (IJECE), 10(5), 4569-4580. DOI: 10.11591/ijece.v10i5.pp4569-4580
  • Morissette, L. & Chartier, S. (2013). The K-Means clustering technique: General considerations and implementation in Mathematica, Tutorials in Quantitative Methods for Psychology, 9(1), 15-24. DOI:10.20982/tqmp.09.1.p015
  • Murtagh, F. & Legendre, P. (2014). Ward’s hierarchical agglomerative clustering method: Which algorithms implement Ward’s criterion?. Journal of Classification, 31, 274-295. DOI: 10.1007/s00357-014-9161-z
  • Mut, S. & Akyürek, Ç. E. (2017). OECD ülkelerinin sağlık göstergelerine göre kümeleme analizi ile sınıflandırılması [Classifying OECD countries according to health indicators using clustering analysis]. International Journal of Academic Value Studies (Javstudies), 3(12), 411-422. DOI: 10.23929/javs.283
  • Nidheesh, N., Abdul Nazeer, K. A. & Ameer, P. M. (2020). A Hierarchical Clustering algorithm based on Silhouette Index for cancer subtype discovery from genomic data. Neural Computing and Applications, 32, 11459-11476. DOI: 10.1007/s00521-019-04636-5
  • Ogbuabor, G. & Ugwoke, F. N. (2018). Clustering algorithm for a healthcare dataset using Silhouette score value. International Journal of Computer Science & Information Technology (IJCSIT), 10(2), 27-37. DOI: 10.5121/ijcsit.2018.10203
  • Özdamar, K. (2004). Paket Programlar İle İstatistiksel Veri Analizi 2 [Statistical Data Analysis with Package Programs 2]. Eskişehir, Turkey: Kaan Kitabevi.
  • Peiro-Palomino J. & Picazo-Tadeo, A.J (2018). OECD: one or many? Ranking countries with a composite well-being indicator. Soc Indic Res, 139, 847-869. DOI: 10.1007/s11205-017-1747-5
  • Saputra, D. M., Saputra, D. & Oswari, L. D. (2019). Effect of distance metrics in determining k-value in Kmeans clustering using Elbow and Silhouette method. Advances in Intelligent Systems Research, 172, 341-346. DOI: 10.2991/aisr.k.200424.051
  • Shahapure, K. R. & Nicholas, C. (2020). “Cluster quality analysis using Silhouette score", 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA), 747-748.
  • Shahbaz, M., Iftikhar, M. & Mahmood, R. (2013). Classification based on Empathy level by Mining Economic Prosperity and Environmental Indicators. International Journal for e-Learning Security (IJeLS), 3(2), 340-349. DOI: 10.20533/ijels.2046.4568.2013.0043
  • Shi, C., Wei, B., Wei, S., Wang, W., Liu, H. & Liu, J. (2021). A quantitative discriminant method of elbow point for the optimal number of clusters in clustering algorithm. J Wireless Com Network, 31. DOI: 10.1186/s13638-021-01910-w
  • Social Progress Index (SPI) (2020). “Global Index: Overview”, https://www.socialprogress.org/index/ global, (Accessed Date: 24.12.2020).
  • Söküt Açar, T. & Ayman Öz, N. (2020). The determination of optimal cluster number by Silhouette index at clustering of the European Union member countries and candidate Turkey by waste indicators. Pamukkale Univ Muh Bilim Derg, 26(3), 481-487. DOI: 10.5505/pajes.2019.49932
  • Syakur, M. A., Khotimah, B. K., Rochman, E. M. S. & Satoto, B. D. (2018). Integration K-Means clustering method and Elbow method for identification of the best customer profile, IOP Conf. Series: Materials Science and Engineering, 336, 012017.
  • Taşçı, M. & Özarı, Ç. (2019), OECD ülkelerinin ekonomik özgürlük göstergelerinin K-Ortalamalar kümeleme yöntemi ve Gri İlişkisel Yöntemi ile analizi [Evaluating economic freedom criterias of OECD countries with grey relational analysis method and cluster analysis]. The Journal of Academic Social Science, 7(96), 464-488. DOI : 10.29228/ASOS.36738
  • Timor, M. & Yüzbaşı Künç, G. (2021). Ekonomik gelişmişliği etkileyen bilgi ekonomisi değişkenlerinin veri madenciliği ile belirlenmesi [Determination of knowledge economy variables that affect economic development by using data mining]. Optimum Journal of Economics and Management Sciences, 8(1), 1-18. DOI: 10.17541/optimum.748237
  • Turan, K. K., Özarı, Ç. & Demir, E. (2016). Kümeleme analizi ile Türkiye ve Ortadoğu ülkelerinin ekonomik göstergeler açısından karşılaştırılması [Comparing Turkey and The Middle East countries with cluster analysis: Economic perspective]. Istanbul Aydin University Journal, 29, 143-165. DOI: 10.17932/IAU.IAUD.m.13091352.2016.8/29.143-165
  • Tüzüntürk, S. (2010). Veri madenciliği ve istatistik [Data mining and statistics]. Bursa Uludağ Journal of Economy and Society, 29(1), 65-90.
  • Umargono, E., Suseno, J. & Vincensius Gunawan, S. K. (2019).K-Means Clustering Optimization using the Elbow Method and Early Centroid Determination Based-on Mean and Median, In Proceedings of the International Conferences on Information System and Technology (CONRIST 2019), 234-240.
  • United Nations Development Program (UNDP) Human Development Index (HDI) (2019). “About Human Development”, http://hdr.undp.org/en/humandev, (Accessed Date: 13. 07. 2020).
  • World Happiness Report (WHR) (2020). “World Happiness Report”, https://worldhappiness.report/, (Accessed Date: 28.12.2020).
  • Wulandari, S. (2020). Analyze k-value selected method of k-means clustering algorithm to clustering province based on disease case. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 9(3), 121-124.
  • Yuan, C. & Yang, H. (2019). Research on K-Value Selection Method of K-Means Clustering Algorithm. J, 2(2), 226-235. DOI: 10.3390/j2020016

Volume 10, Issue 2, 2022

2022.10.02.MIS.01

alphanumeric journal

Volume 10, Issue 2, 2022

Pages 85-104

Received: Oct. 29, 2021

Accepted: July 7, 2022

Published: Dec. 31, 2022

Full Text [559.9 KB]

  • Share

2022 Koltan Yılmaz, Ş., Şener, S.

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Creative Commons Attribution licence

scan QR code to access this article from your mobile device


Contact Us

School of Transportation and Logistics, Istanbul University
Avcilar Campus 34320 Avcilar/Istanbul/TURKEY

Bahadır Fatih Yıldırım, Ph.D.
editor@alphanumericjournal.com
+ 90 (212) 473 70 00 - 19263

alphanumeric journal

alphanumeric journal has been publishing as "International Peer-Reviewed Journal" every six months since 2013. alphanumeric serves as a vehicle for researchers and practitioners in the field of quantitative methods, and is enabling a process of sharing in all fields related to the operations research, statistics, econometrics and management informations systems in order to enhance the quality on a globe scale.