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ABSTRACT 

 

In today's world, risk measurement and risk management are of great importance for various economic reasons. Especially in the 

crisis periods, the tail risk becomes very important in risk estimation. Many methods have been developed for accurate 

measurement of risk. The easiest of these methods is the Value at Risk (VaR) method. However, standard VaR methods are not 

very effective in tail risks. This study aims to demonstrate the usage of delta normal method, historical simulation method, Monte 

Carlo simulation, and importance sampling to calculate the value at risk and to show which method is more effective by applying 

them to the S&P index between 1993 and 2003. 
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1. Introduction 

Since the beginning of human life, the instinct of protection against external factors 
has evolved. This development has been integrated into every aspect of human life 
and has become increasingly widespread. One of the mentioned areas and perhaps 
the first thing that comes to mind is the area of finance. As in all areas, the risk is very 
important in the financial markets. The reason for this importance is the need to 
estimate, if possible, to reduce the risk, regardless of whether it has an institutional 
or individual identity, and to be prepared for the situation and conditions that risk it 
as the most natural state. 

Between 2007 and 2009, the world saw the biggest financial crisis since the 1930s. 
In addition to other factors such as the downturn, the liquidity crisis, the credit crisis 
or the banking crisis, the integrity of many banks and other financial institutions was 
seriously endangered in this period, and a few of them required external and state 
support (de Vooys, 2012, pp.2).  

The crisis showed the relatively fragile world banking system and these developments 
required more effective risk management. It was the alarm bell that augmented 
global awareness toward tail risk among financial risk managers (Gupta and 
Chaudhry, 2019). Gupta and Chaudhry (2019) also state that the occurrence of 
negative extreme events is more frequent than suggested by the normal distribution. 
As stated by Keçeci and Demirtaş (2018), the traditional risk theory works quite well 
when the return distributions are close to normal. A weakness of this approach is the 
assumption of a specific probability distribution. Therefore, traditionally used 
measures of market risk (i.e. variance or standard deviation) might be insufficient to 
approximate the likelihood of maximum loss that a firm may witness under highly 
volatile or normal periods. In this context, new techniques and some models for risk 
measurement have been developed and the most common and easy to use method 
is the Value at Risk method. Neftci (2000) found that the implied VaR would be 20% 
to 30% greater if one used the extreme tails rather than following the standard 
approach and also show that the VaRs calculated using tails of extreme distributions 
are significantly more precise than the standard approach. 

Value-at-risk is a financial instrument that measures the worst expected loss in a 
given confidence interval under normal market conditions over a period of time. The 
fact that the loss is given as a single number is often applied to the investors because 
it is clear and easy (Jorion, 2003). Many of these techniques and models are popular 
because they are mathematically resolvable with an easy calculation of various risk 
criteria. More realistic (and complex) models often have a significant calculation cost 
that requires Monte Carlo methods to estimate the quantities of interest (Brereton 
et.al, 2012, pp.1). 

Efficient estimation of credit risk measurements is often difficult and costly to 
calculate, as they require small amounts to be estimated (Brereton et.al, 2012, pp.4). 
In the case of rare event simulations, common Monte Carlo simulation becomes 
inefficient while the tail probabilities are estimated. Therefore, when Monte Carlo 
simulation is used to accurately measure credit risk in corporate credit portfolios, the 
variance of the estimator should be reduced. A commonly used method for this is the 
importance sampling. The idea behind the importance sampling is that the 



Çoban, Deveci Kocakoç, 
Erken, Aksoy 

Reducing Variation of Risk Estimation by Using Importance Sampling 175 

 

 
 

Alphanumeric Journal 
Volume 7, Issue 2, 2019 

 

determined values of the random variables in a simulation have more effect than the 
others in the predicted parameter. If these "significant" values are highlighted by 
more frequent sampling, then the variance of the estimator can be reduced (de Vooys, 
2012, pp.23). The main issue in the implementation of the importance sampling 
simulation is the selection of biased (or shifted) distribution that promotes important 
regions of the input variables. Therefore, the selection of optimal biased distribution 
is very important. In the literature, it is often seen that there is normal distribution or 
uniform distribution with a sampling distribution for the cases where the events of 
interest are in the normal distribution. This study aims to investigate which 
VaR(value-at-risk) method is efficient among delta-normal method, historical 
simulation method, Monte Carlo method and importance sampling method by 
applying them to S&P index between 1993-2003 and to guide the investors in 
selection of an appropriate method. 

2. Literature  

The Var method shows the maximum risk or loss that can occur at a given probability 
scale and within a certain time frame, within a confidence interval. It usually has a 
severe asymmetric character as the risk or loss behavior mentioned. As one of the 
important reasons for this asymmetric character, the correlation between the factors 
to be measured can be shown.  

Due to this situation, Monte Carlo (MC) simulation has an importance in the analysis 
of credit risk and determination of the behaviors of other financial instruments. 
Morokoff (2004, pp.1626) stated the importance of MC simulation at the point of 
revealing the risk and loss characteristics and obtaining the distribution of this 
behavior. 

The mentioned risk and loss are rare situations because they are generally low in 
terms of probability. Hence, the expectation is a conditional expectation and the cost 
of calculation is high in terms of process and time, and at the same time increases 
the variability of the estimation. At this point, the concept of importance sampling, 
which is one of the techniques developed to reduce the process load that will 
significantly reduce the variability, is encountered.  

The earliest descriptions of the importance sampling were made by Kahn (1950a, 
1950b). The most famous result for the distribution of optimal importance (or 
suggestion) was given by Kahn and Marshall(1953). This technique was first applied 
by Glasserman et al. (1999a, 1999b) for risk measurement in finance. Glasserman and 
Li (2005, pp.1650) proposed a method of importance sampling to reduce the variance 
of loss probabilities, and Glasserman (2005) developed relationship importance 
sampling estimators to this method proposed by Glasserman and Li(2005) when the 
loss distribution was discrete. In another study, Bassamboo et al. (2008, p.600) have 
shown that importance sampling method is asymptotically efficient as compared to 
MC simulation. Kalkbrener et al. (2004) use importance sampling to study capital 
allocation for credit portfolios. 

When the distribution of losses is continuous, Liu (2010, pp.2774) proposed a 
method of limited importance sampling, which produced simulated observations to 
collect in a specific region with probability value. Müller (2016, pp.11), by using the 



Çoban, Deveci Kocakoç, 
Erken, Aksoy 

Reducing Variation of Risk Estimation by Using Importance Sampling 176 

 

 
 

Alphanumeric Journal 
Volume 7, Issue 2, 2019 

 

importance sampling method, revealed that the variance of the loss probabilities 
decrease and thus more efficient predictors can be obtained. 

3. Method 

There are four important parameters used in the calculation of value at risk. These 
are confidence level, lock-up period, distribution of financial assets and portfolio 
diversification.  

Confidence Level: in the literature, 95% and 99% confidence levels are used in VaR 
calculations with the assumption that returns are normally distributed. Naturally, the 
increase in the level of confidence also increases the VaR. (Danielsson, 2011). 

Lock-up Period: It shows how long the assets will stand on the market and this ratio 
is directly proportional to VaR. The longer the duration, the higher the expected price 
change will be (Keasler, 2001, pp.214). 

Distribution of Financial Assets: The assumption is made that the returns of the 
assets for the VaR account distributed normally. However, it may not be normally 
distributed in practice.  

Portfolio Diversification: Investors can reduce their risks by diversifying their 
portfolios. The method that can be used at this stage is the “Average Variance Model” 
proposed by Markowitz (Rubinstein, 2002, pp.1042). The value at risk is simply 
calculated by the following formula; 

 . . .VaR P z T s  

P: The value of the portfolio,  T: lock-up period, z : confidence level, s: standard 
deviation of returns. The value-at-risk calculation methods commonly used in the 
literature can be summarized as follows. 

3.1. Delta Normal Method 

It is the simplest calculation method known. Under the assumption of normality, VaR 
is calculated using z  values. 

 
Figure 1. Under the assumption of normality VaR values (Danielsson, J., 2011) 

3.2. Historical Simulation Method 

In this method, scenarios are produced from historical market data. The portfolio is 
valued by using historical changes in risk factors. Accordingly, the profit/loss 
distribution of the portfolio is calculated. In this model, there is no assumption that 
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returns are normally distributed. There is no need to calculate volatility, correlation or 
other parameters. The probability of model risk is very low. The lack of historical 
simulation method is the complete neglect of the cases not reflected in the data set 
used. (Van den Goorbergh and Vlaar, 1999, pp.20). 

 
Figure 2. VaR Value for Historical Simulation (Danielsson, J., 2011) 

3.3. Monte Carlo Simulation Method 

This method is similar to the historical simulation method. But the difference of 
Monte Carlo is that the scenarios are derived from a determined distribution rather 
than actual historical data. In Monte Carlo simulation, simulated data is used by 
selecting a statistical distribution that reflects the possible changes in prices 
(Danielsson, 2011). It is known as the most comprehensive and strongest value-at-
risk calculation method. However, in the estimation, the variance is large and is the 
subject of discussion as an effective estimation method. 

3.4. Importance Sampling 

Although the MC method is important, it is not effective. By using importance 
sampling method, the variance is reduced, and a more efficient estimator is obtained. 

Glasserman (2003) mentioned the theoretical structure of importance sampling. 
Here, it is worth mentioning the basic elements of this variance reduction method. 
Let X be a random variable with probability density of f  and defined in d . Assume 
that there is a function defined in : dh  . In this case, by the definition of 
expected value, the value of  E h X    can be found as follows; 

   ( ) ( )    I E h X h x f x dx  (1) 

In this case, the standard Monte Carlo estimator is, 

  
1

1ˆ



 
N

MC i

i

I h X
N

 (2) 

(Glasserman, 2003). Here, iX  observations are independent samples drawn from the 
density of f . This estimator is not effective in most cases. Therefore, the sampling 
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efficiency should be increased by giving more weight to the “significant” results by 
using a change in size (Glasserman, 2003). 

 
Figure 3. Importance Sampling 

Defined in d  for dx  , considering a new probability density function of g 
(importance sampling distribution) that provides the condition    0 0f x g x  
, Equation (1) can be written as follows; 

  
 

 
  

f x
I h x g x dx

g x
 (3) 

This final equation obtained can be interpreted as the expected value under the 
distribution with the density of g. Thus, if equation (3) is written by using the 
expected value operator, equation (4) is found: 

  
 

 

 
  

 

f X
I E h X

g X
 (4) 

Random variable X in equation (4) has a density of g. If 1 2, , , NX X X  are 

independent random variables drawn from g a distribution, importance sampling 
estimator associated with g is defined as ; 

  
 

 1

1ˆ



 
N

i

IS i

i i

f X
I h X

N g X
 (5) 

(Glasserman, 2003). Here, the weight of    i if X g X  is called the likelihood ratio 

or derivative of Radon-Nikodym at the point iX (Glasserman, 2003). It is obvious to 

see that ˆ
ISE I I  

 
. The asymptotic variance of the estimator ˆ

ISI  is defined in 

equation (6). 
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21ˆ

  
   

  


h
IS

h x f x
Var I dx I

N N g x


 (6) 

The distribution of g suggestion to be selected directly affects the success of 
importance sampling. Because to reduce the variance in equation (6), it has to be

     g x h x f x  (Glasserman, 2003). Otherwise,  g x  shows a slower 

convergence than the numerator of equality (6),  ˆ
ISVar I  . This situation is very 

far from the purpose. One way to ensure that this does not happen is to select a  g x  

sampling distribution with the non-zero domain, where  f x  has the non-zero 

definition set. In this case, choosing a  g x , (    ,f x kg x k  ) that covers the 

 f x guarantees that the variance does not increase. 

In this study, descriptive statistics of the S&P index between 1993 and 2003 were 
presented and the methods mentioned above were applied. The simulation trial 
numbers for the data are determined as {10, 100, 1000, 10000}. Confidence levels 
and lock-up periods were determined respectively as {99%, 95%} and {1,10} days. The 
necessary codes and calculations for the study were written in MATLAB r2018a and 
the results were reported. 

4. Analysis and Results 

The histogram of the S&P500 index between 1993-2003 is shown in Figure 4. Some 
descriptive statistics of these data are presented in Table 1. 

 

 
Figure 4. Histogram of the S&P 500 Index between 1993-2003  
 

Min. -0.06866 Average 0.00037 

Maks. 0.05732 Mode 0.00038 

1.Quartile -0.00492 Std.Deviation 0.01087 

2.Quartile 0.00034 Skewness -0.01938 

3.Quartile 0.00586 Kurtosis 6.43933 

Table 1. Some descriptive statistics for the S&P 500 index 
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Figure 5. Graph of Normality for Returns 

When the descriptive statistics and normality graphs are examined, it is clearly seen 
that the data is not normally distributed and that it occurs in a leptokurtic structure. 
In this case, the methods mentioned in the third section are applied to these data. 
The results of the delta normal method for a portfolio value of 5000 units are shown 
in Table 2 and the results for the historical simulation method are shown in Table 3. 
When Table 2 is examined, the maximum amount that the investor will lose in 1 day 
at a 99% confidence level (VaR) is 126.76 units, the maximum amount to lose for 1 
day at a 95% confidence level is 89.46 units. 

 %99 %95 

T=1 126.70637 89.45578 

T=10 400.68074 282.88406 
Table 2. VaR Values for Delta Normal Method  
 

 %99 %95 

T=1 138.04435 89.50708 

T=10 436.53456 283.04625 
Table 3. VaR Values for Historical Simulation Method 

In the historical simulation method, the calculation is based on the pth-quartile since 
there is no distribution assumption. The data is sorted from the minimum return to 
the highest return and the VaR values are calculated by the corresponding trust level. 
When the VaR values calculated by this method are examined, the maximum amount 
to loose in 1 day at a 99% confidence level is 138.04 units, while the maximum 
amount to loose for 1 day at a 95% confidence level is 89.51 units. The sample size 
(n) was set to 100 in each simulation and the portfolio value was determined as 5000 
units for Monte Carlo simulation. To perform the simulation, it is necessary to make 
the distribution assumption in this method. Therefore, throughout all simulation, 
data is derived from the normal distribution with an average of 0 and variance 1, and 
calculations are made by the equation (2). 
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N 10 100 1000 10000 

ˆ
MCI  0.02600 0.02210 0.02200 0.02226 

 ˆ
MCVar I  0.00013 0.00019 0.00020 0.00025 

1

MC

tVaR   105.66842 109.42369 109.32067 108.82248 

10

MC

tVaR   334.15291 346.02809 345.70232 344.12690 

Table 4. VaR Values for Monte Carlo Method 
 

 
Figure 6. Monte Carlo Simulation 

When Table 4 is examined, in 1-day VaR of the investor at the 99% confidence level is 
109.32 and 108.82 units for N = 1000 and 10000 values, respectively. Also, when the 
number of simulations increases, the variance of the Monte Carlo estimator 
increases. A similar algorithm is followed for importance sampling. However, an 
assumption of “suggestion(g(x))" distribution is required, which is considered to 
represent rare events. To emphasize more rare events, the  g x  distribution is 
chosen to be normally distributed, with a mean of 2 and a variance of 1.  h x  is the 
indicator function. Figure-7 shows objective function  f x , suggestion  g x , 
indicator function  h x  and convergence to ˆ

ISE I 
 

. The VaR values for the 99% 
confidence level using these arguments are summarized in Table 5.  By using 
importance sampling, the investor’s maximum losses for 1 day at 99% confidence 
levels are calculated as 108.73 and 108.75 units respectively for N = 1000 and 10000 
values. Since the variance values obtained during the simulations are about 10 times 
smaller than in Table 5. Besides, the MC estimator can achieve a good convergence at 
10000 iterations, while the IS estimator achieves this convergence about 10 times 
fewer iterations. Therefore, it is also efficient in terms of transaction volume. 
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N 10 100 1000 10000 

ˆ
ISI  0.02106 0.02224 0.02277 0.02275 

 ˆ
ISVar I  0.000014 0.000012 0.0000113 0.0000101 

1

IS

tVaR   110.51593 109.01598 108.73225 108.75535 

10

IS

tVaR   349.48206 344.73880 343.84157 343.91461 

Table 5. VaR Values for Importance Sampling 
 
 

 
Figure 7. Importance Sampling 

The key to risk measurement is to consider the measurements that can yield truly 
effective results, not VaR results. 

5. Conclusion and Suggestions 

Financial institutions, banks, and investment advisors are expected to make the best 
of the risk management by considering the conditions of the market they are in. 
Nowadays, there are rare events in the finance field that disrupt the general structure. 
Rare events can be not only the left tails but also the right tails of the distributions. 
In such cases, it is important to reflect the real risk to the investor. One of the 
methods of risk measurement is the Value at Risk (VaR) method. In this study, the 
usage of delta normal method, historical simulation method, Monte Carlo simulation 
and importance sampling to calculate the Value at Risk and to show which method is 
more effective by applying them to the S&P index between 1993 and 2003. The Delta 
normal method is very easy to calculate, but in most cases the data is not normally 
distributed, so it gives very misleading results in risk measurement. The historical 
simulation method can be a realistic method for the investor since it is easy to apply 
and real historical data is used instead of generating random numbers due to the 
scenario. Because it gives weight to each data at the same rate and the difference of 
big changes cannot be seen. What we would like to address in this study is the effect 
of importance sampling on risk estimation. In this context, Monte Carlo method and 
importance sampling method were compared. 
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N n  ˆ
ISVar I   ˆ

MCVar I  

10 100 0.000014 0.00013 

100 100 0.000012 0.00019 

1000 
100 0.0000113 0.00020 

200 0.0000068 0.0001014 

10000 
100 0.0000101 0.00025 

200 0.0000060 0.0001123 
Table 6. Variance of Estimators According to n, N 

In the empirical application, it is found that ˆ
ISI converges to the parameter value 

almost 10 times faster than the ˆ
MCI . It is clear in Table 6 that as simulations increase 

for sample size n=100 and n=200, variance of Monte Carlo estimator increase and 
variance of importance sampling estimator decrease. Another significant result is 
obtained with comparing variance values of estimators during simulations with 
different sample sizes. According to the variance values obtained from the 
simulations, the variance of the importance sampling estimator is approximately 10 
times smaller than the variances of the Monte Carlo estimator. Considering the 
concept of risk and its importance in the financial literature, the difference, which is 
approximately 10 times between variance values, is quite significant. Thus, it is 
shown that the importance sampling method reduces the variance of loss 
probabilities and produces asymptotically effective results from the Monte Carlo 
simulation.  

Therefore; in this study, it is proposed the importance sampling method to reduce 
variance of loss probabilities and so the risk. In this way, the investor will be freed 
from the misleading statistical value and thus the loss, in addition, to make a rational 
decision. 
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