Title

QUALIFLEX and ORESTE Methods for the Insurance Company Selection Problem

Sigorta Şirketi Seçim Probleminde QUALIFLEX ve ORESTE Yöntemleri


Title
( Turkish )
Author(s)
Author(s)
Abstract

All assets and attempts of the people are threatened by uncertainty named as the risk. Insurance is a social security tool used to recover the loss that may arise as a result of the realization of risks. Insurance contract is established by mutual aggrement between an insurance company (insurer) and the insurance holder (insured). The insurer takes over the insurance coverage, the insured falls under the premium payment obligation with the insurance contract. The contract may be signed for life (personal accident, health), goods (automobiles, house, fire, transportation, engineering), liability, legal protection and credit. There are numerous insurance companies in the market and the contracts may change from insurance company to company. Therefore, it is important to select the insurance company that meets the business needs in the best way. This selection may be handled as a MCDM (Multi Criteria Decision Making) problem. MCDM problems refer to make a decision for the alternatives characterized by multiple, usually conflicting, criteria and there are several methods for solving MCDM problems. In this paper, QUALIFLEX (QUALItative FLEXible) and ORESTE (Organization, Rangement Et Synthese De Donnes Relationnelles) methods are used. The insurance company alternatives are ranked by these methods and the results are compared.

İnsanların tüm varlık ve girişimleri, risk adı verilen belirsizliklerin tehtidi altındadır. Sigorta, risklerin gerçekleşmesi sonucu doğabilecek zararları gidermek için kullanılan sosyal bir güvenlik aracıdır. Sigorta sözleşmesi, bir sigorta şirketi (sigortacı) ile sigorta ettirenin karşılıklı anlaşmasıyla kurulur. Sigorta sözleşmesi ile sigorta şirketi, sigorta güvencesini üzerine alır, sigorta ettiren ise prim ödeme borcu altına girer. Sözleşme; can (hayat, ferdi kaza, sağlık), mal (otomobil, yangın, nakliyat, mühendislik), sorumluluk, hukuki koruma ve kredi için imzalanabilir. Piyasada çok sayıda sigorta şirketi vardır ve sözleşmeler, sigorta şirketinden sigorta şirketine değişebilir. Bu nedenle işletmelerin ihtiyaçlarını en iyi şekilde karşılayacak sigorta şirketini seçmeleri önemlidir. Bu seçim, bir Çok Kriterli Karar Verme (ÇKKV) problemi olarak ele alınabilir. ÇKKV problemlerinde çok sayıda ve genellikle birbiriyle çelişen kriterler altında, alternatifler arasından bir seçim yapılır ve bu problemleri çözmek için kullanılan pekçok yöntem vardır. Bu çalışmada, ÇKKV yöntemlerinden QUALIFLEX (QUALItative FLEXible) ve ORESTE (Organization, Rangement Et Synthese De Donnes Relationnelles) yöntemleri kullanılmıştır. Sigorta şirketi alternatifleri bu yöntemlerle sıralanmış ve sonuçlar karşılaştırılmıştır.

Abstract
( Turkish )
Record

Alphanumeric Journal ID

Classification

Language

Year

Issue

First Page

Last Page

Cite

Tuş Işık, A., (2016). QUALIFLEX and ORESTE Methods for the Insurance Company Selection Problem, Alphanumeric Journal, 4(2), 055-068.

References
  • Akhisar, I. (2014). Performance ranking of Turkish insurance companies: the ANP application. Finansal Araştırmalar ve Çalışmalar Dergisi, 6 (11), 1-13.
  • Alenjagh, R. S. (2013). Performance evaluation and ranking of insurance companies in Tehran Stock Exchange by financial ratios using ANP and PROMETHEE. European Online Journal of Natural and Social Sciences, 2 (3),  3478-3486.
  • Alinezhad, A. & Esfandiari, N. (2012). Sensitivity analysis in the QUALIFLEX and VIKOR methods. Journal of Optimization in Industrial Engineering, 5(10), 29-34.
  • Amiri, M., Mazloumi, N. & Hejazi, M. (2011). Application of balanced scorecards and VIKOR in rating of insurance companies. Seasonal of Insurance Investigation, 26(2), 115–144.
  • Chatterjee, P. & Chakraborty, S.  (2013) “Advanced Manufacturing Systems Selection Using ORESTE Method” Int. J. Advanced Operations Management, 5 (4), 337 – 361.
  • Chatterjee, P.& Chakraborty, S. (2014) “Flexible Manufacturing System Selection Using Preference Ranking Methods: A Comparative Study” International Journal of Industrial Engineering Computations, 5, 315–338.
  • Chen, T. Y. & Tsui, C. W. (2012). Intuitionistic fuzzy QUALIFLEX method for optimistic and pessimistic decision making. Advances in information Sciences and Service Sciences(AISS), 4 (14), 219-226.
  • Chen, T. Y., Chang, C. H., & Lu, J. R. (2013). The extended QUALIFLEX method for multiple criteria decision analysis based on interval type-2 fuzzy sets and applications to medical decision making. European Journal of Operational Research, 226, 615–625.
  • Delhaye, C., Teghem, J. & Kunsch, P. (1991) “Application of the ORESTE Method to a Nuclear Waste Management Problem”, lnternational Journal of Production Economics, 24, 29-39.
  • Dinçer, S.E. (2011) “The Structural Analysis of Key Indicators of Turkish Manufacturing Industry: ORESTE and MAPPAC Applications”, European Journal of Scientific Research, 60(1), 6-18.
  • Doumpos, M., Gaganis, C. & Pasiouras, F. (2012). Estimating and explaining the financial performance of property and casualty insurers: A two-stage analysis. Journal of CENTRUM Cathedra: The Business and Economics Research Journal, 5(2), 155-170.
  • Eliseo V. Ana, Jr. (2009) “Sewer Asset Management – Sewer Structural Deterioration Modeling and Multicriteria Decision Making in Sewer Rehabilitation Projects Prioritization”, Doctorate Thesis, Vrije University, Department of Hydrology and Hydraulic Engineering, Amsterdam.
  • Eroğlu, E., Yıldırım, B. F., Özdemir, M. (2014) “Çok Kriterli Karar Vermede ORESTE Yöntemi ve Personel Seçiminde Uygulanması” Yönetim Dergisi, 76, 81-95.
  • Fasanghari, M., Mohamedpour, M. & Mohamedpour, M. A. (2009) “A Novel Method Combining ORESTE, Fuzzy Set Theory, and TOPSIS Method for Ranking the Information and Communication Technology Research Centers of Iran”, Sixth International Conference on Information Technology: New Generations.
  • Jafari, H. (2013) “Identification and Prioritization of Grain Discharging Operations Risks by Using ORESTE Method” American Journal of Public Health Research, 1 (8), 214-220.
  • Jafari, H., Noshadi, E. & Khosheghbal, B. (2013), “Ranking Ports Based on Competitive Indicators by Using ORESTE Method”, International Research Journal of Applied and Basic Sciences, 4 (6), 1492-1498.
  • Khodamoradi, S., Safari, A. & Rahimi, R. (2014). A hybrid multi-criteria model for insurance companies rating. International Business Research, 7(6), 150-163.
  • Kirkbesoglu, E., McNeill, J. & Ozder, E. H.  (2015). An Evaluation of the effectiveness of insurance organizations at providing information to policyholders: a cross-cultural comparison between United Kingdom & Turkey, International Business Research, 8(9), 35-46.
  • Leeneer, I. & Pastijn, H. (2002) “Selecting Land Mine Detection Strategies by Means of Outranking Mcdm Techniques” European Journal of Operational Research, 139, 327–338.
  • Martel, J.M. & Matarazzo, B. (2005). Multiple Criteria Decision Analysis: State of the Art Surveys. Other outranking approaches, Springer Science + Business Media, Inc., 199-201.
  • Mayer, D., Warner, D. M., Siedel, G.J. & Lieberman, J. K. (2012). Legal Basics for Entrepreneurs. Retrieved from http://2012books.lardbucket.org/
  • Paelinck, J.H.P. (1976). Qualitative multiple criteria analysis, environmental protection and multiregional development. Papers of the Regional Science Association, 36, 59–74.
  • Paelinck, J.H.P. (1977). Qualitative multicriteria analysis: an application to airport location. Environment and Planning, 9(8), 883–895.
  • Paelinck, J.H.P. (1978). QUALIFLEX: a flexible multiple – criteria method. Economics Letters, 1(3), 193–197.
  • Pastijn H. & Leysen J. (1989) “Constructing an Outranking Relation with ORESTE” Mathematical and Computer Modelling: An International Journal, 12(10-11), 1255-1268.
  • Pastijn, H. & Leysen, J. (2009) “Using an Ordinal Outranking Method Supporting the Acquisition of Military Equipment”,  RTO-MP-SAS-080 - Decision Support Methodologies for Acquisition of Military Equipment, Royal Military Academy Brussels (Belgium).
  • Sehhat, S., Taheri, M. & Sadeh, D. H. (2015). Ranking of insurance companies in Iran using AHP and TOPSIS techniques. American Journal of Research Communication, 3(1), 51-60.
  • Tadesse, F. (2014). Insurance selection decision: Factors that influence the choice of insurance services in selected insurance companies. A master thesis in Jimma University.
  • Vaughan, E. J. & Vaughan, T. M. (2008). Fundamentals of Risk and Insurance. United States of America : John Wiley & Sons, Inc.
  • Wang, J. C., Tsao, C. Y. & Chen, T. Y. (2015). A likelihood-based QUALIFLEX method with interval type-2 fuzzy sets for multiple criteria decision analysis. Soft Computing, 19, 2225–2243.
  • Xue, Y. X., You, J. X., Zhao, X. & Liu, H. C. (2016). An integrated linguistic MCDM approach for robot evaluation and selection with incomplete weight information. International Journal of Production Research, DOI: 10.1080/00207543.2016.1146418
  • Yücenur, G. N. & Demirel, N. Ç. (2012). Group decision making process for insurance company selection problem with extended VIKOR method under fuzzy environment. Expert Systems with Applications, 39(3), 3702-3707.
  • Żak, J. (2005) “The Comparison of Multiobjective Ranking Methods Applied to Solve the Mass Transit Systems’ Decision Problems” Proceedings of the 10th Jubilee Meeting of the EURO Working Group on Transportation, Poznan, September 13–16, Poznan University of Technology Publishers, Poznan, pp. 184–193.
  • Zhang, X. & Xu, Z. (2015). Hesitant fuzzy QUALIFLEX approach with a signed distance-based comparison method for multiple criteria decision analysis. Expert Systems with Applications, 42, 873–884.
  • Zhang, Z. (2015). Multi-criteria decision-making using interval-valued hesitant fuzzy QUALIFLEX methods based on a likelihood-based comparison approach. Neural Comput & Applic, DOI 10.1007/s00521-015-2156-9